Effect of friction spot welding parameters on the joint formation and mechanical properties of Al to Cu

2018 ◽  
Vol 63 (1) ◽  
pp. 33-41 ◽  
Author(s):  
Maria E. B. Cardillo ◽  
Junjun Shen ◽  
Nelson G. de Alcântara ◽  
Conrado R. M. Afonso ◽  
Jorge F. dos Santos
2016 ◽  
Vol 860 ◽  
pp. 49-52 ◽  
Author(s):  
Munir Tasdemir ◽  
Mustafa Kemal Bilici ◽  
Mehmet Kurt

In the present study, we attempt to use powder of glass spheres filler and reinforce material in HDPE to produce composite structure and then evaluate its mechanical properties to study the effect of welding parameters and filler content on mechanical properties of HDPE. The effect of welding parameters (tool rotational speed, the plunge depth and the dwell time) on friction stir spot welding properties of high density polyethylene/glass spheres (hollow) polymer composites sheets was studied.


2011 ◽  
Vol 391-392 ◽  
pp. 661-665
Author(s):  
Yan Yu ◽  
Feng Xue Wang ◽  
Zai Dao Yang

A series of spot welding technology, joint mechanical properties and microhardness test analysis of TRIP800 high strength steel were researched. Based on these experiments and analysis, effect of spot welding parameters such as welding current, welding time and electrode pressure on joint mechanical properties were explored. The relevant spot welding parameters of TRIP800 high strength steel of spot welding were recommended, such as welding current is7.5~8.0KA, electrode pressure is 450 kgf and welding time is 20cyc. Welding electrode should be to ensure that as much as possible and clean the surface,to avoid welding current and welding time is too high or too long, as well as forging lack of power, to prevent the occurrence of welding defects.


2014 ◽  
Vol 675-677 ◽  
pp. 15-18 ◽  
Author(s):  
Long Long Hou ◽  
Ran Feng Qiu ◽  
Hong Xin Shi ◽  
Jun Qing Guo

Aluminum alloy A6061 and mild steel Q235 was welded using resistance spot welding with an interlayer of AlCu28. The mechanical properties of the joint were investigated; the effects of various welding parameters on nugget diameter and tensile shear load of the joints were systematically discussed. The results reveal that it is effective to weld aluminum alloy and mild steel using resistance spot welding with an interlayer of AlCu28.


2012 ◽  
Vol 706-709 ◽  
pp. 3016-3021 ◽  
Author(s):  
L.C. Campanelli ◽  
U.F.H. Suhuddin ◽  
Jorge Fernandez Dos Santos ◽  
N.G. Alcantara

Friction spot welding (FSpW) is a recent solid state welding process developed and patented by GKSS Forschungszentrum (now Helmholtz-Zentrum Geesthacht), Germany. A spot-like connection is produced by means of an especially designed non-consumable tool consisting of pin, sleeve and clamping ring that creates a joint between sheets in overlap configuration through frictional heat and plastic deformation. FSpW offers many advantages over conventional spot joining techniques including high energy efficiency, surface quality and environmental compatibility. Comparing with friction stir spot welding, FSpW produces a weld without keyhole on the surface at the end of the joining process. In the present study, the possibility of joining AZ31 magnesium alloy by FSpW technique was evaluated by using different welding parameters (rotational speed, plunge depth and dwell time), aiming to produce high quality connections. Microstructural features were analyzed by light optical microscope and mechanical performance was investigated by microhardness test and lap shear test. Microstructure analysis revealed that defects free welds could be produced. A slight decrease in grain size of the stir zone was observed causing a slight increase in the microhardness of this region. The preliminary lap shear data demonstrated that the weld strength is comparable to other welding process.


2011 ◽  
Vol 291-294 ◽  
pp. 2885-2888
Author(s):  
Yi Min Tu ◽  
Ran Feng Qiu ◽  
Hong Xin Shi ◽  
Hua Yu ◽  
Ke Ke Zhang

In order to obtain better understanding of the resistance spot weldability of magnesium alloy and provide some foundational information for improving mechanical properties of the magnesium alloy joint, the influencing factors of pore formation during resistance spot welding of magnesium alloy, such as preexisting pores in base material, hydrogen rejection, shrinkage strain and expulsion, were analyzed; the corresponding restraining measures were discussed. The analyses reveal that the shrinkage strain and expulsion are important factors in contributing to the formation of pores during resistance spot welding of magnesium alloy, and that the pore formation could be suppressed by adjusting welding parameters.


2020 ◽  
Vol 118 (1) ◽  
pp. 108
Author(s):  
M.A. Vinayagamoorthi ◽  
M. Prince ◽  
S. Balasubramanian

The effects of 40 mm width bottom plates on the microstructural modifications and the mechanical properties of a 6 mm thick FSW AA6061-T6 joint have been investigated. The bottom plates are placed partially at the weld zone to absorb and dissipate heat during the welding process. An axial load of 5 to 7 kN, a rotational speed of 500 rpm, and a welding speed of 50 mm/min are employed as welding parameters. The size of the nugget zone (NZ) and heat-affected zone (HAZ) in the weld joints obtained from AISI 1040 steel bottom plate is more significant than that of weld joints obtained using copper bottom plate due to lower thermal conductivity of steel. Also, the weld joints obtained using copper bottom plate have fine grain microstructure due to the dynamic recrystallization. The friction stir welded joints obtained with copper bottom plate have exhibited higher ductility of 8.9% and higher tensile strength of 172 MPa as compared to the joints obtained using a steel bottom plate.


Sign in / Sign up

Export Citation Format

Share Document