Phase Selection and Microhardness of Directionally Solidified AlCoCrFeNi2.1 Eutectic High-Entropy Alloy

Author(s):  
Peng Peng ◽  
Shengyuan Li ◽  
Weiqi Chen ◽  
Yuanli Xu ◽  
Xudong Zhang ◽  
...  
Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1290 ◽  
Author(s):  
Ning Liu ◽  
Chen Chen ◽  
Isaac Chang ◽  
Pengjie Zhou ◽  
Xiaojing Wang

To study the effect of alloy composition on phase selection in the CoCrCu0.1FeMoNi high-entropy alloy (HEA), Mo was partially replaced by Co, Cr, Fe, and Ni. The microstructures and phase selection behaviors of the CoCrCu0.1FeMoNi HEA system were investigated. Dendritic, inter-dendritic, and eutectic microstructures were observed in the as-solidified HEAs. A simple face centered cubic (FCC) single-phase solid solution was obtained when the molar ratio of Fe, Co, and Ni was increased to 1.7 at the expense of Mo, indicating that Fe, Co, and Ni stabilized the FCC structure. The FCC structure was favored at the atomic radius ratio δ ≤ 2.8, valence electron concentration (VEC) ≥ 8.27, mixing entropy ΔS ≤ 13.037, local lattice distortion parameter α2 ≤ 0.0051, and ΔS/δ2 > 1.7. Mixed FCC + body centered cubic (BCC) structures occurred for 4.1 ≤ δ ≤ 4.3 and 7.71 ≤ VEC ≤ 7.86; FCC or/and BCC + intermetallic (IM) mixtures were favored at 2.8 ≤ δ ≤ 4.1 or δ > 4.3 and 7.39 < VEC ≤ 8.27. The IM phase is favored at electronegativity differences greater than 0.133. However, ΔS, α2, and ΔS/δ2 were inefficient in identifying the (FCC or/and BCC + IM)/(FCC + BCC) transition. Moreover, the mixing enthalpy cannot predict phase structures in this system.


2011 ◽  
Vol 189-193 ◽  
pp. 3840-3843 ◽  
Author(s):  
Hong Bao Cui ◽  
Hai Yan Wang ◽  
Jin Yong Wang ◽  
Heng Zhi Fu

Directional solidification (DS) of FeCoNiCrAl high entropy alloy is carried out to investigate the microstructures and microsegregation under controlled solidification conditions. With an increasing solidification rate, the interface morphology grows in a planar, cellular and dendritic manner. The microstructures of the dendritic and interdendritic segregation areas are found to be spherical precipitates and basket-weave structures, respectively. With the help of an electron microprobe, microsegregation is determined in directionally solidified FeCoNiCrAl high entropy alloys. In contrast to the as-cast condition, directional solidification can refine microstructures of FeCoNiCrAl high entropy alloy dramatically and reduce microsegregation effectively.


2011 ◽  
Vol 66-68 ◽  
pp. 146-149 ◽  
Author(s):  
Hong Bao Cui ◽  
Li Feng Zheng ◽  
Jin Yong Wang

The microstructures of FeCoNiCrCu high entropy alloy were investigated under directional solidification. The results showed that only diffraction peak corresponding to a FCC crystal structure was observed in the directionally solidified FeCoNiCrCu alloy. With increasing solidification rate, the interface morphology would grows in planar, cellular and dendrite. Comparing the potentiodynamic polarization of as-cast and directionally solidified FeCoNiCrCu high entropy alloy in a 3.5%NaCl solution, it is clearly reveals that the corrosion resistance of directionally solidified FeCoNiCrCu alloy is superior to that of the as-cast FeCoNiCrCu alloy.


2020 ◽  
Vol 119 ◽  
pp. 106723 ◽  
Author(s):  
Huiting Zheng ◽  
Qin Xu ◽  
Ruirun Chen ◽  
Gang Qin ◽  
Xinzhong Li ◽  
...  

Science ◽  
2021 ◽  
Vol 373 (6557) ◽  
pp. 912-918 ◽  
Author(s):  
Peijian Shi ◽  
Runguang Li ◽  
Yi Li ◽  
Yuebo Wen ◽  
Yunbo Zhong ◽  
...  

2019 ◽  
Author(s):  
Nirmal Kumar ◽  
Subramanian Nellaiappan ◽  
Ritesh Kumar ◽  
Kirtiman Deo Malviya ◽  
K. G. Pradeep ◽  
...  

<div>Renewable harvesting clean and hydrogen energy using the benefits of novel multicatalytic materials of high entropy alloy (HEA equimolar Cu-Ag-Au-Pt-Pd) from formic acid with minimum energy input has been achieved in the present investigation. The synthesis effect of pristine elements in the HEA drives the electro-oxidation reaction towards non-carbonaceous pathway . The atomistic simulation based on DFT rationalize the distinct lowering of the d-band center for the individual atoms in the HEA as compared to the pristine counterparts. This catalytic activity of the HEA has also been extended to methanol electro-oxidation to show the unique capability of the novel catalyst. The nanostructured HEA, properties using a combination of casting and cry omilling techniques can further be utilized as fuel cell anode in direct formic acid/methanol fuel cells (DFFE).<br></div>


Author(s):  
Janez Dolinšek ◽  
Stanislav Vrtnik ◽  
J. Lužnik ◽  
P. Koželj ◽  
M. Feuerbacher

Sign in / Sign up

Export Citation Format

Share Document