interdendritic segregation
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 5)

H-INDEX

2
(FIVE YEARS 0)

2022 ◽  
Vol 1049 ◽  
pp. 102-107
Author(s):  
Aleksandr A. Ragazin ◽  
Vasiliy V. Yashin ◽  
Ilya A. Latushkin ◽  
Evgenii V. Aryshesnkii ◽  
Fedor V. Grechnikov

Objective of the study: study of various homogenization modes effects on mechanical and corrosive properties of rolled sheets from Al-Mg system alloy 1570 with additions of zirconium and scandium transition metals. The sheets were produced in laboratory conditions from the ingot, cast in production DC mold based on the commercial production practices and treatment modes. 4 homogenization modes, 2 tempers H12 and H321, and several modes of stabilization annealing in the temperature range from 240 °C to 325 °C have been reviewed. The samples have been comprehensively examined using optic and electron scanning microscope, mechanical properties were achieved by break test in compliance with ISO 6892-1, corrosion was examined using ASTM G66 and G67 standards. The curve of 1570 alloy sheets softening as the function of annealing temperature was constructed. It was demonstrated that the increasing temperature effect during homogenization leads to strength properties decrease and corrosion resistance improvement due to interdendritic segregation elimination. Among analyzed homogenization modes, 360 - 380 °C - 6 h mode is established as the most practical, and the sheets. produced without stabilization annealing, occurred to be the most resistant to exfoliation corrosion. The sheets, subjected to annealing at 260 °C - 2 h, show no traces of layer corrosion, but have pit corrosion locations rated as «PC» based on ASTM G-66 classification, such rating is unacceptable for the manufacture of products for use in the marine environment.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 382
Author(s):  
Qiang Zeng ◽  
Chao Xiao ◽  
Jianli Li

On the basis of the Brody–Flemings model and modified Voller–Beckermann model, an analytical model of micro-segregation is established by considering the actual solidification cooling conditions of bloom. According to the developed model, the interdendritic solute distribution at the origin of the cracking gap is obtained. It is found that both phosphorus and sulfur have quite severe segregation, but both carbon and manganese have slight segregation; these results agree well with the semiquantitative analysis results of the scanning electron microscope (SEM). At the same time, the interdendritic segregation leads to an enhanced increase in the temperature range of crack formation; correspondingly, the possibility of cracking significantly increases and, thus, element segregation is the internal cause of crack formation. On the other hand, taking into account heat transfer, phase transformation, and metallurgical pressure, the strain of the solid shell is revealed through finite element software. When the solid shell thickness is equal to the distance of 90 mm between the opening point of the crack and the inner arc side, the tensile strain of the solid front is much bigger than the critical strain, which meets the external cause of crack formation; therefore, reasons for the cracking of blooms are successfully found.


Author(s):  
A. Tomaszewska

The characterization of the primary microstructure of the new Co-based superalloy of Co-20Ni-9Al-7W-3Re-2Ti type was shown in this article. The investigated alloy was manufactured by induction melting process from pure feedstock materials. The fundamental technological problem related to Co-Al-W-X multicomponent alloys' casting process is a strong susceptibility to interdendritic segregation of alloying elements, especially tungsten and rhenium. The performed analysis revealed that the observed effect of alloying elements segregation is detectable and much stronger than for Co-9Al-9W and Co-20Ni-7Al-7W alloys, related to titanium, nickel and aluminium migration to inter-dendritic spaces. Consequently, the tungsten concentration gradient between dendritic and interdendritic zones is higher than for Co-9Al-9W and Co-20Ni-7Al-7W alloys. The same situation is in the case of rhenium and cobalt, but Co's concentration in the interdendritic zone is only slightly lower.


Author(s):  
S. Koskenniska ◽  
A. Kaijalainen ◽  
T. Pikkarainen ◽  
S. Mehtonen ◽  
D. Porter ◽  
...  

Abstract The effect of as-cast structure and macrosegregation on the mechanical properties of a direct-quenched low-alloy martensitic ultrahigh-strength aluminum killed and calcium treated steel cast at different superheats was studied. Samples from the castings were laboratory hot rolled with two different finishing rolling temperatures to distinguish the effect of hot rolling. Using optical emission spectrometry, the steel composition was analyzed as a function of slab thickness in order to detect the variations in steel chemistry due to macrosegregation. Further, hardness profiles, prior austenite grain sizes and tensile and impact toughness were determined for the hot-rolled specimens. It was found that interdendritic segregation was more intense at the higher superheat, which led to more pronounced positive segregation in the columnar-to-equiaxed transition (CET) zone, and negative segregation between CET and the centerline. These macrosegregation patterns were inherited by the hot-rolled samples causing local variations in hardness, which followed the variations in carbon content. However, altering the superheat had a minor effect on the nominal transformed microstructures and nominal prior austenite grain sizes. This occurred because of the interdendritic segregation induced composition variations both enlarged and decreased by turns the grain sizes. The CET also reduced measured impact toughness values.


2015 ◽  
pp. 163-196

Inclusions and chemical segregation are factors in many process-induced failures involving steel parts. Inclusions are nonmetallic compounds introduced during production; segregation is a type of chemical partitioning that occurs during solidification. This chapter discusses the origins of segregation and inclusions and their effect on the mechanical properties and microstructure of steel. It explains how to identify various types of inclusions and characteristic segregation patterns, such as banding. It also describes the effect of hot work processing on solidification structure and the chemical variations produced by interdendritic segregation.


2011 ◽  
Vol 399-401 ◽  
pp. 1746-1749 ◽  
Author(s):  
Guo Xin Ye ◽  
Bo Wu ◽  
Chao Hui Zhang ◽  
Tuo Chen ◽  
Mao Hua Lin ◽  
...  

The microstructures and the solidification processes simulation of multi-principal high-entropy alloy FeCoNiCrMn were studied by using both experimental and computational approaches. The microstructures were identified by methods of XRD, SEM and EDS. The solidification process was simulated by Scheil-Gulliver solidification model. The alloy mainly forms a single FCC solid solution, but Mn atoms, as well as Ni atoms tend to be enriched in residual liquid phase during the solidification process. These atoms show interdendritic segregation. Present experimental results and computational results are supported each other well.


2011 ◽  
Vol 687 ◽  
pp. 44-50
Author(s):  
Fu Xiang Huang ◽  
Ming Li ◽  
Ping Ying ◽  
Yong Hong Xu ◽  
Ying Zhang

It is well known that the rare-earth elements (RE) have exhibited favorable microalloying effects on the microstructure and properties of silver alloys. In the present investigation, a detailed description of the microstructure of a Silver-4wt.%Copper-0.3wt.% Nickle as–cast alloy containing 0.2wt. % of a cerium element was presented. Particles types occurring and their distribution in the microstructure, as well as the distribution of elements in the phases were described. The result show that the second phase in Ag-Cu-Ni Alloy is Cu-Ni-rich solution phase, some of which forms interdendritic segregation in Ag matrix as eutectic colonies. Trace additions of cerium to the alloy decrease eutectic proportion and size of the Cu-Ni-rich phase, result in finer and more uniform secondary phases distributed in the α-Ag matrix. Besides Cu-Ni-rich phase, the Ni-Cu-Ce-rich and Ag-Cu-Ce-rich phases were found in the alloy. The Ni-Cu-Ce-rich should be the (NiCu)5Ce, which is distributed as dispersive particle in the Ag matrix, and Ag-Cu-Ce-rich phases should be (AgCu)4Ce, which is distributed as fibrous particle of eutectic colonies. Some of (AgCu)4Ce phases are located at the interface between α-Ag matrix and Cu-Ni-rich phases, which indicate that Ce could be segregated at the frontier of Cu-Ni-rich phases during the growth, causing Cu-Ni-rich phase refinement.


2011 ◽  
Vol 189-193 ◽  
pp. 3840-3843 ◽  
Author(s):  
Hong Bao Cui ◽  
Hai Yan Wang ◽  
Jin Yong Wang ◽  
Heng Zhi Fu

Directional solidification (DS) of FeCoNiCrAl high entropy alloy is carried out to investigate the microstructures and microsegregation under controlled solidification conditions. With an increasing solidification rate, the interface morphology grows in a planar, cellular and dendritic manner. The microstructures of the dendritic and interdendritic segregation areas are found to be spherical precipitates and basket-weave structures, respectively. With the help of an electron microprobe, microsegregation is determined in directionally solidified FeCoNiCrAl high entropy alloys. In contrast to the as-cast condition, directional solidification can refine microstructures of FeCoNiCrAl high entropy alloy dramatically and reduce microsegregation effectively.


Sign in / Sign up

Export Citation Format

Share Document