KOH direct activation for preparing activated carbon fiber from polyacrylonitrile-based pre-oxidized fiber

2014 ◽  
Vol 30 (3) ◽  
pp. 441-446 ◽  
Author(s):  
Lili Gao ◽  
Haiyan Lu ◽  
Haibo Lin ◽  
Xiuyun Sun ◽  
Jianling Xu ◽  
...  
2013 ◽  
Vol 686 ◽  
pp. 109-117 ◽  
Author(s):  
Chee Heong Ooi ◽  
Chun Li Ang ◽  
Fei Yee Yeoh

Oil palm empty fruit bunch (EFB) is an abundant agricultural waste available in Malaysia. More than two million tonnes (dry weight) of extracted oil palm fiber are estimated to be generated annually. Usually the EFB is used as boiler fuel to produce steam in the palm oil mills. EFB fiber can be used to prepare activated carbon fiber (ACF) by carbonization and activation. Conversion of EFB fiber to ACF will reduce the amount of agricultural waste produced annually and it represents a potential source of adsorbents used for adsorption. The ACF has many advantages as compared to the conventional activated carbon found in powder or granular form. These advantages include large surface area, high adsorption capacity and high rates of adsorption from the gas or liquid phase. In this study, ACF produced from EFB fiber by single step direct activation process (ACF-D) was compared against ACF produced by conventional 2-step carbonization and activation (ACF-ND). The different properties between ACFs produced were investigated. The raw EFB and ACFs were characterized by a SEM and EDS, FTIR and XRD. The results show that EFB has carbon content of 63.33 weight percentage (wt %) with oxygen content of 36.67 wt %. ACF-D was found to have a high carbon content of 93.63 wt%, with low oxygen content (5.19 wt %). ACF-ND gave a higher carbon content up to 95.68 wt% and accompanied by a lower oxygen content (3.85 wt %).


2001 ◽  
Vol 11 (PR3) ◽  
pp. Pr3-279-Pr3-286
Author(s):  
X. Dabou ◽  
P. Samaras ◽  
G. P. Sakellaropoulos

2013 ◽  
Vol 68 (5) ◽  
pp. 1151-1157 ◽  
Author(s):  
Dongkai Zhou

Biofilms on fiber-based carriers have attracted much concern in wastewater treatment processes recently. In this study: (1) a novel sandwich structure fiber-based biofilm carrier was produced, which consisted of an inner core composed of polyacrylonitrile-based activated carbon fiber felt (PAN-ACFF) and an outer coat made of polyester reticular cloth with polypropylene fiber loops; (2) the novel carrier was filled in a step-feeding pilot-scale modified University of Cape Town process (MUCT) for sewage treatment; the MUCT contained a series of pre-anoxic/anaerobic/anoxic-1/anoxic-2/oxic tanks, wherein nitrification liquor was recycled to the anoxic-2 tank and an extra liquor return from the anoxic-1 to the pre-anoxic tank was set up; and (3) the removal efficiencies of chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) were continuously tested for two periods as operational parameters alternated. The optimum values were collected in Period II, when the influent loads were 2,100.6 ± 120.3 gCOD/(d m3), 205.5 ± 20.4 gTN/(d m3), 39.9 ± 3.9 gTP/(d m3), the removal percentages were 93.1 ± 1.1% of COD, 39.4 ± 3.5% of TN, and 84.6 ± 3.4% of TP. For COD, NH4+-N, and TP, the specific removal loads of filler were 291.5 ± 18.2, 22.9 ± 3.1, 4.8 ± 0.5 (g d)/kg.


Sign in / Sign up

Export Citation Format

Share Document