Electrochemical immunoassay of E. coli in urban sludge using electron mediator-mediated enzymatic catalysis and gold nanoparticles for signal amplification

2017 ◽  
Vol 34 (1) ◽  
pp. 101-106 ◽  
Author(s):  
Wenjie Lu ◽  
Rongjin Xu ◽  
Xinai Zhang ◽  
Jianzhong Shen ◽  
Changfeng Li
RSC Advances ◽  
2016 ◽  
Vol 6 (114) ◽  
pp. 112981-112987 ◽  
Author(s):  
Xinai Zhang ◽  
Chenyong Huang ◽  
Yuxiang Jiang ◽  
Jianzhong Shen ◽  
Ping Geng ◽  
...  

A MWCNT/Th/AuNP composite, used to construct an electrochemical biosensor for the mannose assay of living cancer cells, contained thionine as an electron mediator and simplified detection based on enzymatic catalysis for signal amplification.


2019 ◽  
Vol 20 (6) ◽  
pp. 497-505 ◽  
Author(s):  
Abeer M. Abd El-Aziz ◽  
Mohamed A. Shaker ◽  
Mona I. Shaaban

Background: Bacterial lipases especially Pseudomonas lipases are extensively used for different biotechnological applications. Objectives: With the better understanding and progressive needs for improving its activity in accordance with the growing market demand, we aimed in this study to improve the recombinant production and biocatalytic activity of lipases via surface conjugation on gold nanoparticles. Methods: The full length coding sequences of lipase gene (lipA), lipase specific foldase gene (lipf) and dual cassette (lipAf) gene were amplified from the genomic DNA of Pseudomonas aeruginosa PA14 and cloned into the bacterial expression vector pRSET-B. Recombinant lipases were expressed in E. coli BL-21 (DE3) pLysS then purified using nickel affinity chromatography and the protein identity was confirmed using SDS-PAGE and Western blot analysis. The purified recombinant lipases were immobilized through surface conjugation with gold nanoparticles and enzymatic activity was colorimetrically quantified. Results: Here, two single expression plasmid systems pRSET-B-lipA and pRSET-B-lipf and one dual cassette expression plasmid system pRSET-B-lipAf were successfully constructed. The lipolytic activities of recombinant lipases LipA, Lipf and LipAf were 4870, 426 and 6740 IUmg-1, respectively. However, upon immobilization of these recombinant lipases on prepared gold nanoparticles (GNPs), the activities were 7417, 822 and 13035 IUmg-1, for LipA-GNPs, Lipf-GNPs and LipAf-GNPs, respectively. The activities after immobilization have been increased 1.52 and 1.93 -fold for LipA and LipAf, respectively. Conclusion: The lipolytic activity of recombinant lipases in the bioconjugate was significantly increased relative to the free recombinant enzyme where immobilization had made the enzyme attain its optimum performance.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 472
Author(s):  
Qunying Yuan ◽  
Manjula Bomma ◽  
Zhigang Xiao

Phytochelatins, the enzymatic products of phytochelatin synthase, play a principal role in protecting the plants from heavy metal and metalloid toxicity due to their ability to scavenge metal ions. In the present study, we investigated the capacity of soluble intracellular extracts from E. coli cells expressing R. tropici phytochelatin synthase to synthesize gold nanoparticle. We discovered that the reaction mediated by soluble extracts from the recombinant E. coli cells had a higher yield of gold nanoparticles, compared to that from the control cells. The compositional and morphological properties of the gold nanoparticles synthesized by the intracellular extracts from recombinant cells and control cells were similar. In addition, this extracellular nanoparticle synthesis method produced purer gold nanoparticles, avoiding the isolation of nanoparticles from cellular debris when whole cells are used to synthesize nanoparticles. Our results suggested that phytochelatins can improve the efficiency of gold nanoparticle synthesis mediated by bacterial soluble intracellular extracts, and the potential of extracellular nanoparticle synthesis platform for the production of nanoparticles in large quantity and pure form is worth further investigation.


2021 ◽  
Vol 11 (8) ◽  
pp. 3670
Author(s):  
Chih-Yu Chen ◽  
Yung-Chu Chang ◽  
Teh-Hua Tsai ◽  
Man-Hai Liu ◽  
Ying-Chien Chung

Research on gold nanoparticles (AuNPs) has often focused on their physical, chemical, and crystalline characteristics. Commercial AuNPs have been applied in the diverse fields of biomedicine, catalysis, photovoltaics, and sensing. In this study, we explored the various activities of AuNPs to widen their applicability. This paper presents a simple and rapid synthesis process of AuNPs with bacteria isolated from a gold mining area. We also investigated the optimization of reaction parameters for AuNP synthesis. The study results revealed that among the isolated strains, Bifidobacterium lactis and Escherichia coli demonstrated the highest capabilities of AuNP synthesis. The optimal pH values for AuNP synthesis by B. lactis (BLAuNPs) and E. coli (ECAuNPs) were 5.0 for 72 h of incubation and 8.0 for 24 h of incubation. The average particle sizes of ECAuNPs and BLAuNPs were 4.2 and 5.6 nm, respectively. Furthermore, these biogenic AuNPs were found to be stable with no aggregation after 3 months of storage. BLAuNPs and ECAuNPs exhibited high levels of antimicrobial, antioxidant, photocatalytic, and antityrosinase activity. Moreover, they were noncytotoxic to skin cells even at 100% melanin inhibitory concentrations. Considering the demonstrated multifunctional activities of AuNPs, BLAuNPs and ECAuNPs have promising potential for commercialization.


The Analyst ◽  
2021 ◽  
Vol 146 (8) ◽  
pp. 2679-2688
Author(s):  
Chammari Pothipor ◽  
Noppadol Aroonyadet ◽  
Suwussa Bamrungsap ◽  
Jaroon Jakmunee ◽  
Kontad Ounnunkad

An ultrasensitive electrochemical biosensor based on a gold nanoparticles/graphene/polypyrrole composite modified electrode and a signal amplification strategy employing methylene blue is developed as a potential tool for the detection of miRNA-21.


2011 ◽  
Vol 123 (10) ◽  
pp. 2355-2360 ◽  
Author(s):  
Renato Bonomi ◽  
Alessandro Cazzolaro ◽  
Anna Sansone ◽  
Paolo Scrimin ◽  
Leonard J. Prins

2014 ◽  
Vol 6 (7) ◽  
pp. 2221-2226 ◽  
Author(s):  
Xiao-Yan Li ◽  
Zi Yi ◽  
Hao Tang ◽  
Xia Chu ◽  
Ru-Qin Yu

Highly sensitive electrochemical immune analysis was achieved based on dual signal amplification of AuNPs and telomerase extension reaction.


Sign in / Sign up

Export Citation Format

Share Document