nickel affinity chromatography
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 8)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Katherine Picott ◽  
Robert Flick ◽  
Elizabeth Anne Edwards

Reductive dehalogenases (RDases) are a family of redox enzymes that are required for anaerobic organohalide respiration, a microbial process that is useful in bioremediation. Structural and mechanistic studies of these enzymes have been greatly impeded due to challenges in RDase heterologous expression, primarily because of their cobamide-dependence. There have been a few successful attempts at RDase production in unconventional heterologous hosts, but a robust method has yet to be developed. In this work we outline a novel respiratory RDase expression system using Escherichia coli as the host. The overexpression of E. coli's cobamide transport system, btu, and RDase expression under anaerobic conditions were established to be essential for the expression of active RDases from Dehalobacter - an obligate organohalide respiring bacterium. The expression system was validated on six RDase enzymes with amino acid sequence identities ranging from >30-95%. Dehalogenation activity was verified for each RDase by assaying cell-free extracts of small-scale expression cultures on various chlorinated substrates including chloroalkanes, chloroethenes, and hexachlorocyclohexanes. Two RDases, TmrA from Dehalobacter sp. UNSWDHB and HchA from Dehalobacter sp. HCH1, were purified by nickel affinity chromatography. Incorporation of both the cobamide and iron-sulfur cluster cofactors was verified, and the specific activity of TmrA was found to be consistent with that of the native enzyme. The heterologous expression of respiratory RDases, particularly from obligate organohalide respiring bacteria, has been extremely challenging and unreliable. Here we present a relatively straightforward E. coli expression system that has performed well for a variety of Dehalobacter spp. RDases.


Author(s):  
Elham Biglari Goliloo ◽  
Abdolnabi Tollabi ◽  
Hossein Zarei Jaliani

Background and Aims: Q59L mutant of L-asparaginase enzyme from Escherichia coli (E. coli) has been introduced with lower side effects. This version of the enzyme might have potential applications in the treatment of leukemia patients. We utilized SHuffle T7 strain of E. coli, to produce the mutant enzyme in the presence of chaperone molecules. Materials and Methods: Q59LAsp gene was cloned into pET28a expression vector, and two strains of E. coli (BL21 DE3 and SHuffle T7 strains) were used to produce recombinant protein. In parallel, PG-Tf2 plasmid was cloned into the same strains, and the effect of trigger factor chaperone and groELS chaperonines was studied. The his-tagged recombinant protein was expressed and purified using nickel affinity chromatography. The amount of recombinant protein which is produced in each condition was determined and compared. Results: The amount of soluble recombinant protein was enhanced in the presence of chaperones in both strains of E. coli. SHuffle T7 strain produced more soluble recombinant protein in the soluble state than BL21 DE3 strain. So the best condition for the production of soluble recombinant Q59L mutant protein was the use of PG-Tf2 plasmid in the SHuffle T7 strain. Conclusion: Application of the new strain SHuffle T7, with chaperones simultaneously showed better results in the production of Q59L mutant version of L-Asparaginase.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hai-Yang Yu ◽  
Dong-Mei Gao ◽  
Wei Zhou ◽  
Bing-Bing Xia ◽  
Zhi-Yuan He ◽  
...  

Abstract Introduction Ovine interferon-tau (oIFN-τ) is a newly discovered type I interferon. This study used biochemical techniques to transform the oIFN-τ gene into Escherichia coli to obtain the mass and soluble expression of the recombinant protein. Materials and Methods First, total RNA was extracted from fresh sheep embryonic tissues with TRIzol reagent and then used as a template to reverse transcribe and amplify the mature oIFN-τ gene with RT-PCR. The amplified product was next digested with the HindIII and XhoI restriction enzymes and inserted into the pET-32a(+) vector to construct the prokaryotic expression plasmid. The corrected in-frame recombinant plasmid, pET-32a(+)-oIFN-τ, was transformed into E. coli Rosetta (DE3) competent cells. After induction with isopropyl-beta-D-thiogalactopyranoside (IPTG), the recombinant protein was detected in bacteria. Finally, the bacteria were lysed by sonication, and the recombinant protein was purified by nickel affinity chromatography and DEAE anion exchange chromatography. Results The protein was confirmed to be oIFN-τ, which mainly existed in the soluble lysate fraction, as proven by SDS-PAGE and Western blot assays. Conclusion Purified IFN-τ exists mostly in a soluble form, and its anti-vesicular stomatitis virus (VSV) activity reached 7.08×10(6)IU/mL.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 625
Author(s):  
Mohammed S. Aldughaim ◽  
Fatimah Alsaffar ◽  
Michael D. Barker

Broad-spectrum cytotoxic drugs have been used in cancer therapy for decades. However, their lack of specificity to cancer cells often results in serious side-effects, limiting efficacy. For this reason, antibodies have been used to attempt to specifically target cytotoxic drugs to tumours. One such approach is antibody-directed enzyme prodrug therapy (ADEPT) which uses a tumour-directed monoclonal antibody, coupled to an enzyme, to convert a systemically administered non-toxic prodrug into a toxic one only at the tumour site. Among the main drawbacks of ADEPT is the immunogenicity of the antibody-enzyme complex, which is exacerbated by slow clearance due to size, hence limiting repeated administration. Additionally, the mono-specificity of the antibody could potentially result in drug resistance with repeated administration. We have identified a novel short peptide sequence, p700, derived from a human tissue inhibitor of metalloproteinases-3 (TIMP-3), which binds to and inhibits a number of tyrosine kinase growth factor receptors (VEGFRs1-3, FGFRs 1-4 and PDGFRα) which are known to be upregulated in many tumours and tumour vasculature. In this report, we fused p700 to His-tagged, codon-optimised, carboxypeptidase G2 (CPG2). CPG2 is a bacterial enzyme used in ADEPT, which activates potent nitrogen-mustard pro-drugs by removal of an inhibitory glutamic acid residue. Recombinant CPG2-p700 was highly expressed in Escherichia coli and successfully purified by nickel affinity chromatography. Biolayer interferometry showed that CPG2-p700 had a 100-fold increase in binding affinity for VEGFR2 compared with CPG2 alone and retained its catalytic activity, as determined by methotrexate cleavage. In the presence of CPG2-p700, the ZD2676P pro-drug showed significant cytotoxicity for 4T1 cells compared with prodrug alone or CPG2 alone. p700 is, therefore, a potentially useful alternative to monoclonal antibodies for enzyme pro-drug therapy and could equally be used for effective delivery of other cytotoxic drugs to tumour tissue.


2020 ◽  
Vol 367 (19) ◽  
Author(s):  
Vanessa C Thompson ◽  
Bailey E McGuire ◽  
Mia S Frier ◽  
Max S G Legg ◽  
Tyler W Dyer ◽  
...  

ABSTRACT We used error-prone PCR to generate mutations in a subtilisin protease-encoding gene, and screened for recombinants that expressed temperature-sensitive (TS) variants. From the dozens of mutations that we detected in the recombinant genes we found that those mutations that affected aspartate-75 had the most profound effect on temperature stability. We thus focused our analysis on two variants of subtilisin C, the more heat-sensitive variant 24 (V24), with amino acid changes D75G, L234M and Q274P; and variant 25 (V25), with a single amino acid change, D75A. For V24 a two log-fold reduction in activity occurs in under 10 min at 50°C. For V25, a two log-fold reduction occurs at 60°C, a temperature that reduces the activity of the wild type enzyme by about 30%. The V24 variant fully inactivates enzymes commonly used in molecular biology research and in molecular diagnostics, and is stabilized against autolysis with propylene glycol concentrations of 10% or greater. The subtilisin variants are produced by a strain of Bacillus subtilis that lacks expression of its native secreted proteases, and the variants can be isolated from the supernatants using nickel affinity chromatography.


2019 ◽  
Author(s):  
Walter Beata Maria ◽  
Szulc Aneta ◽  
Glinkowska Monika

ABSTRACTPrs (phosphoribosyl pyrophosphate synthase) is a broadly conserved protein that synthesises 5-phosphoribosyl 1-pyrophospate (PRPP); a substrate for biosynthesis of at least 10 enzymatic pathways including biosynthesis of DNA building blocks – purines and pyrimidines. In Escherichia coli, it is a protein of homo-hexameric quaternary structure, which can be challenging to work with, due to frequent aggregation and activity loss. Several studies showed brief purification protocols for various bacterial PRPP synthases, in most cases involving ammonium sulfate precipitation.Here, we provide a protocol for expression of E. coli Prs protein in Rosetta (DE3) and BL21 (DE3) pLysE strains and a detailed method for His-Prs and untagged Prs purification on nickel affinity chromatography columns. This protocol allows purification of proteins with high yield, purity and activity. We report here N-terminally His-tagged protein fusions, stable and active, providing that the temperature around 20 °C is maintained at all stages, including centrifugation. Moreover, we successfully applied this method to purify two enzyme variants with K194A and G9S alterations. The K194A mutation in conserved lysine residue results in protein variant unable to synthetize PRPP, while the G9S alteration originates from prs-2 allele variant which was previously related to thermo-sensitive growth. His-PrsG9S protein purified here, exhibited comparable activity as previously observed in-vivo suggesting the proteins purified with our protocol resemble their physiological state.The protocol for Prs purification showed here indicates guidance to improve stability and quality of the protein and to ensure more reliable results in further assays in-vitro.


2019 ◽  
Vol 20 (6) ◽  
pp. 497-505 ◽  
Author(s):  
Abeer M. Abd El-Aziz ◽  
Mohamed A. Shaker ◽  
Mona I. Shaaban

Background: Bacterial lipases especially Pseudomonas lipases are extensively used for different biotechnological applications. Objectives: With the better understanding and progressive needs for improving its activity in accordance with the growing market demand, we aimed in this study to improve the recombinant production and biocatalytic activity of lipases via surface conjugation on gold nanoparticles. Methods: The full length coding sequences of lipase gene (lipA), lipase specific foldase gene (lipf) and dual cassette (lipAf) gene were amplified from the genomic DNA of Pseudomonas aeruginosa PA14 and cloned into the bacterial expression vector pRSET-B. Recombinant lipases were expressed in E. coli BL-21 (DE3) pLysS then purified using nickel affinity chromatography and the protein identity was confirmed using SDS-PAGE and Western blot analysis. The purified recombinant lipases were immobilized through surface conjugation with gold nanoparticles and enzymatic activity was colorimetrically quantified. Results: Here, two single expression plasmid systems pRSET-B-lipA and pRSET-B-lipf and one dual cassette expression plasmid system pRSET-B-lipAf were successfully constructed. The lipolytic activities of recombinant lipases LipA, Lipf and LipAf were 4870, 426 and 6740 IUmg-1, respectively. However, upon immobilization of these recombinant lipases on prepared gold nanoparticles (GNPs), the activities were 7417, 822 and 13035 IUmg-1, for LipA-GNPs, Lipf-GNPs and LipAf-GNPs, respectively. The activities after immobilization have been increased 1.52 and 1.93 -fold for LipA and LipAf, respectively. Conclusion: The lipolytic activity of recombinant lipases in the bioconjugate was significantly increased relative to the free recombinant enzyme where immobilization had made the enzyme attain its optimum performance.


Molecules ◽  
2019 ◽  
Vol 24 (13) ◽  
pp. 2516 ◽  
Author(s):  
Tseng ◽  
Murni ◽  
Han ◽  
Arfiati ◽  
Shih ◽  
...  

The production of a bacteriocin-like substance with antimicrobial activity, named peocin, by the probiotic Paenibacillus ehimensis NPUST1 was previously reported by our laboratory. The present study aimed to identify peocin and increase the peocin yield by heterologous expression in Escherichia coli BL21(DE3). Peocin was identified as a DNA starvation/stationary phase protection protein, also called DNA-binding protein from starved cells (Dps), by gel overlay and LC-MS/MS analysis. For mass production of peocin, fed-batch cultivation of E. coli was performed using a pH-stat control system. Purification by simple nickel affinity chromatography and dialysis yielded 45.3 mg of purified peocin from a 20-mL fed-batch culture (49.3% recovery). The biological activity of the purified peocin was confirmed by determination of the MIC and MBC against diverse pathogens. Purified peocin exhibited antimicrobial activity against aquatic, food spoilage, clinical and antibiotic-resistant pathogens. In an in vivo challenge test, zebrafish treated with purified peocin exhibited significantly increased survival rates after A. hydrophila challenge. The present study is the first to show the antimicrobial activity of Dps and provides an efficient strategy for production of bioactive peocin, which will aid the development of peocin as a novel antimicrobial agent with potential applications in diverse industries.


Parasite ◽  
2018 ◽  
Vol 25 ◽  
pp. 62 ◽  
Author(s):  
Congshan Liu ◽  
Jiaqing Yao ◽  
Jianhai Yin ◽  
Jian Xue ◽  
Haobing Zhang

Echinococcosis, which causes a high disease burden and is of great public health significance, is caused by the larval stage of Echinococcus species. It has been suggested that tubulin is the target of benzimidazoles, the only drugs for the treatment of echinococcosis. This study evaluated the characteristics of tubulins from Echinococcus granulosus. The full-length cDNAs of E. granulosus α- and β-tubulin isoforms were cloned by reverse transcription PCR from protoscolex RNA. Then, these two tubulin isoforms (α9 and β4) were recombinantly expressed as insoluble inclusion bodies in Escherichia coli. Nickel affinity chromatography was used to purify and refold the contents of these inclusion bodies as active proteins. The polymerization of tubulins was monitored by UV spectrophotometry (A350) and confirmed by confocal microscopy and transmission electron microscopy (TEM). Nucleotide sequence analysis revealed that E. granulosus 1356 bp α9-tubulin and 1332 bp β4-tubulin encode corresponding proteins of 451 and 443 amino acids. The average yields of α9- and β4-tubulin were 2.0–3.0 mg/L and 3.5–5.0 mg/L of culture, respectively. Moreover, recombinant α9- and β4-tubulin were capable of polymerizing into microtubule-like structures under appropriate conditions in vitro. These recombinant tubulins could be helpful for screening anti-Echinococcus compounds targeting the tubulins of E. granulosus.


Biologia ◽  
2014 ◽  
Vol 69 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Ping-Lin Ong ◽  
Tzu-Ting Chuang ◽  
Tzu-Fan Wang ◽  
Long-Liu Lin

AbstractBased on sequence alignment of selected Cl− dependent and independent glycoside hydrolase family 13 enzymes, two invariant residues (Arg201 and Asn347) and one tyrosine (Tyr365) that might be responsible for the binding of Bacillus licheniformis trehalose-6-phosphate hydrolase (BlTreA) to chloride ion were identified. The role of these three residues was further explored by mutational and biophysical analyses. The mutant enzymes (R201Q/E/K, N327Q/D/K, and Y365A/R) and BlTreA were individually overexpressed in Escherichia coli M15 host cells and purified by one-step nickel affinity chromatography on Ni-NTA resin. The purified BlTreA and Y365A had a specific activity of 236.9 and 47.6 U/mg protein, respectively. The remaining enzymes lost their hydrolase activity completely even in the presence of high salt. With the exception of Y365A, all mutant enzymes did not have the ability to bind fluoride, chloride and nitrate anions. Structural analyses showed that the circular dichroism spectra of the mutant proteins were consistent with those of BlTreA. However, wild-type and mutant enzymes displayed a slight difference in the profiles of intrinsic tryptophan fluorescence. Collectively, these results clearly indicate that Arg201 and Agr327 residues might play an essential role in chloride binding of BlTreA.


Sign in / Sign up

Export Citation Format

Share Document