scholarly journals Enhancing the electrochemical properties of a nickel–cobalt-manganese ternary hydroxide electrode using graphene foam for supercapacitors applications

Author(s):  
V. N. Kitenge ◽  
K. O. Oyedotun ◽  
O. Fasakin ◽  
D. J. Tarimo ◽  
N. F. Sylla ◽  
...  

AbstractThis study has investigated the effect of the incorporation of graphene foam (GF) into the matrix of a ternary transition-metals hydroxide containing nickel, cobalt, and manganese for optimal electrochemical performances as electrodes for supercapacitors applications. An adopted simple, low-cost co-precipitation synthesis method involved the loading a mass of the ternary metal hydroxides (NiCoMn-TH) onto various GF mass loading so as to find ints effect on the electrochemical properties of the hydroxides. Microstructural and chemical composition of the various composite materials were investigated by employing scanning/transmission electron microscopy (SEM/TEM), x-ray diffraction (XRD), Raman spectroscopy, and N2 physisorption analysis among others. Electrochemical performances of the NiCoMn-TH/200 mg GF composite material evaluated in a three-electrode system using 1 M KOH solution revealed a maximum specific capacity around 178.6 mAh g−1 compared to 76.2 mAh g−1 recorded for the NiCoMn-TH pristine material at a specific current of 1 A g−1. The best mass loading of GF nanomaterial (200 mg GF), was then utilised as a positive electrode material for the design of a novel hybrid device. An assembled hybrid NiCoMn-TH/200 mg GF//CSDAC device utilizing the NiCoMn-TH/200 mg GF and activated carbon derived from the cocoa shell (CSDAC) as a positive and negative electrode, respectively, demonstrated a sustaining specific capacity of 23.4 mAh g−1 at a specific current of 0.5 A g−1. The device also yielded sustaining a specific energy and power of about 22.32 Wh kg−1 and 439.7 W kg−1, respectively. After a cycling test of over 15,000 cycles, the device could prove a coulombic efficiency of ~ 99.9% and a capacity retention of around 80% within a potential range of 0.0–1.6 V at a specific current of 3 A g−1. These results have demonstrated the prodigious electrochemical potentials of the as-synthesized material and its capability to be utilized as an electrode for supercapacitor applications.

Batteries ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 26
Author(s):  
Álvaro Doñoro ◽  
Álvaro Muñoz-Mauricio ◽  
Vinodkumar Etacheri

Although lithium-sulfur (Li-S) batteries are one of the promising candidates for next-generation energy storage, their practical implementation is limited by rapid capacity fading due to lithium polysulfide (LiPSs) formation and the low electronic conductivity of sulfur. Herein, we report a high-performance lithium-sulfur battery based on multidimensional cathode architecture consisting of nanosulfur, graphene nanoplatelets (2D) and multiwalled carbon nanotubes (1D). The ultrasonic synthesis method results in the generation of sulfur nanoparticles and their intercalation into the multilayered graphene nanoplatelets. The optimized multidimensional graphene-sulfur-CNT hybrid cathode (GNS58-CNT10) demonstrated a high specific capacity (1067 mAh g−1 @ 50 mA g−1), rate performance (539 @ 1 A g−1), coulombic efficiency (~95%) and cycling stability (726 mAh g−1 after 100 cycles @ 200 mA g−1) compared to the reference cathode. Superior electrochemical performances are credited to the encapsulation of nanosulfur between the individual layers of graphene nanoplatelets with high electronic conductivity, and effective polysulfide trapping by MWCNT bundles.


Ionics ◽  
2021 ◽  
Vol 27 (5) ◽  
pp. 1853-1860
Author(s):  
Nicolò Pianta ◽  
Davide Locatelli ◽  
Riccardo Ruffo

AbstractThe research into sodium-ion battery requires the development of high voltage cathodic materials to compensate for the potential of the negative electrode materials which is usually higher than the lithium counterparts. In this framework, the polyanionic compound Na3V2(PO4)2F3 was prepared by an easy-to-scale-up carbothermal method and characterized to evaluate its electrochemical performances in half cell vs. metallic sodium. The material shows a specific capacity (115 mAh g−1) close to the theoretical limit, good coulombic efficiency (>99%) and an excellent stability over several hundred cycles at high rate. High-loading free-standing electrodes were also tested, which showed interesting performances in terms of areal capacity and cyclability.


2012 ◽  
Vol 463-464 ◽  
pp. 730-733 ◽  
Author(s):  
Lu Shi ◽  
Chao Lin Miao ◽  
Gai Rong Chen ◽  
Bin Xu ◽  
Shi Chen

The carbon materials prepared by PVDF carbonization at different temperatures have similar BET surface area and pores volume. The content of fluorine in the carbons decreased with the carbonization temperature from 1.46% (atm %) at 600°C to 0.18 %( atm %) at 1000°C. The first cycle specific capacity and the initial coulombic efficiency decreases with the decrease of fluorine content in the samples. The first cycle discharge capacity decreased from 982 mAh/ g at 600°C to 752 mAh/ g at 1000°C and the initial coulombic efficiency decreased from 31.8% at 600°C to 24% at 1000°C. It is believed that fluorine contained in the carbon materials has a positive effect to improve the electrochemical properties as anode materials for Li-ion batteries.


2010 ◽  
Vol 105-106 ◽  
pp. 664-667
Author(s):  
Sheng Wen Zhong ◽  
Wei Hu ◽  
Qian Zhang

The precursor of Mn0.75Ni0.25CO3 is prepared by carbonate co-precipitation method. And the cathode material 0.5Li2MnO3•0.5LiMn0.5Ni0.5O2 is synthesized with two stages calcining temperatures T1 and T2. T1 represents 400°C, 500°C, 600°C and T2 is selected at 750°C, 850°C, 950°C respectively. XRD Patterns shows that the cathode material has the integrated structures of Li2MnO3 and LiMO2, and it has better crystallization during the rise of calcined temperature at 950°C. The electrochemical performances tests indicates that the initial discharge specific capacity are greater than 220mAh/g at the current density 0.2 mA/cm2 in 2.5-4.6V at room temperature. When cathode material is calcined at 750°C, its discharge specific capacity even reach to 248mAh/g, but the cathode material has more perfect general electrochemical properties during calcined temperature at 950°C.


2019 ◽  
Vol 12 (04) ◽  
pp. 1950054 ◽  
Author(s):  
Huilin Fan ◽  
Youhong Wang ◽  
Mingxiang Yu ◽  
Kangkang Wang ◽  
Junting Zhang ◽  
...  

The microstructure and electrochemical property of Cu–Al–Si alloy anode material are studied in this paper. The research shows that the alloy particle has a basic circular outline, and two copper-rich phases with different silicon contents are detected in the particle, and both phases with nanostructure are observed in its surface layer. The nano-silicon alloy negative electrode material needs to be used in a certain proportion with graphite, binder and conductive agent, and the stirring process also has an important influence on its electrochemical performance. Multiple mixing can achieve a better cycle retention compared to direct mixing. The first-cycle coulombic efficiency of the electrode material is improved up to about 90%, and the specific capacity is still higher than 500[Formula: see text]mAh[Formula: see text]g[Formula: see text] after 100 cycles. The battery manufacturing process is similar to the graphite negative electrode, so it is easy to be applied.


Author(s):  
Jack R. Fitzpatrick ◽  
Sara I. R. Costa ◽  
Nuria Tapia-Ruiz

In recent years, sodium-ion batteries (NIBs) have been greatly explored as an alternative technology to lithium-ion batteries (LIBs) due to their cost-effectiveness and promise in mitigating the energy crisis we currently face. Similarities between both battery systems have enabled a fast development of NIBs, however, their full commercialisation has been delayed due to the lack of an appropriate anode material. Hard carbons (HCs) arise as one of the most promising materials and are already used in the first generation of commercial NIBs. Although promising, HCs exhibit lower performance compared to commercial graphite used as an anode in LIBs in terms of reversible specific capacity, operating voltage, initial coulombic efficiency and cycling stability. Nevertheless, these properties vary greatly depending on the HC in question e.g. surface area, porosity, degree of graphitisation, defect amount, etc., which in turn are dependent on the synthesis method and precursor used. Optimisation of these properties will bring forward the widespread commercialisation of NIBs at a competitive level with current LIBs. This review aims to provide a brief overview of the current understanding of the underlying reaction mechanisms occurring in the state-of-the-art HC anode material as well as their structure-property interdependence. We expect to bring new insights into the engineering of HC materials to achieve optimal, or at least, comparable electrochemical performance to that of graphite in LIBs.


2013 ◽  
Vol 743-744 ◽  
pp. 35-43
Author(s):  
Shi Ming Zhang ◽  
Jun Xi Zhang ◽  
Bo Cheng He ◽  
Suo Jiong Xu ◽  
Xu Ji Yuan

nanosized FePO4 and Fe1-xCexPO4 (x=0.02, 0.04, 0.08) cathode materials were synthesized by microemulsion method. The samples were prepared via a microemulsion system in a H2O/cyclohexane/Triton x-100/n-butyl alcohol at different temperatures (30 , 45 , 50 , 60 ) and then sintered at 380 and 460 for 3 h. The thermal stability, structure and morphology were investigated by means of TG/DCS, X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), and the electrochemical properties were characterized by cyclic voltammetry (CV) and galvanostatic charge and discharge tests. Results show that synthesis temperature has a great influence on the performances of FePO4, and the sample synthesized at 45 shows the best performances with a diameter of about 20 nm and a high discharge initial specific capacity of 142mAh/g and retaining 123mAh/g after 20 cycles at 0.1 C. The Ce-doped FePO4, Fe1-xCexPO4 (x=0.02, 0.04, 0.08), can effectively improve the electrochemical properties of FePO4 cathode materials. The Fe0.96Ce0.04PO4 exhibits an initial discharge capacity of 158.2mAh/g and retains 152mAh/g after 20 cycles at 0.1 C. Hence, Fe0.96Ce0.04PO4 is a promising candidate for cathode materials of lithium ion batteries.


NANO ◽  
2021 ◽  
pp. 2150029
Author(s):  
Qian Zhang ◽  
Renxia Zhu ◽  
Chenyu Zhao ◽  
Runze Fan ◽  
Yong Zhang ◽  
...  

Application of lithium-sulfur battery has been limited due to polysulfide dissolution, the insulating nature of sulfur and the volumetric strain produced during charge and discharge process. To improve the performance of Li-S batteries, two kinds of bimetallic sulfides of NiCo2S4 with flaky (F-NiCo2S4) and sea urchin-like (S-NiCo2S4) structures were synthesized by using simple hydrothermal method, which were used as sulfur carriers in lithium-sulfur batteries and showed excellent electrochemical properties. At 0.2[Formula: see text]C, both electrodes of F-NiCo2S4/S and S-NiCo2S4/S have high pristine discharge specific capacities of 986[Formula: see text]mAh[Formula: see text]g[Formula: see text] and 959[Formula: see text]mAh[Formula: see text]g[Formula: see text]. At high current density of 4[Formula: see text]C, the F-NiCo2S4/S electrode still has a high pristine discharge specific capacity of 673[Formula: see text]mAh[Formula: see text]g[Formula: see text] and a coulombic efficiency of 97.00%. The specific capacity can remain at 526[Formula: see text]mAh[Formula: see text]g[Formula: see text] with a low average attenuation of 0.17% even after 130 cycles. The excellent electrochemical performances of the cathode material can be ascribed to the synergistic effect of tubular morphology, good electrical conductivity and strong adsorption ability of NiCo2S4 matrix for polysulfide. The job provides a new scheme and material for application of lithium-sulfur batteries with high performance.


NANO ◽  
2019 ◽  
Vol 14 (08) ◽  
pp. 1950103
Author(s):  
Wen-Zhe Shen ◽  
Yi Ma ◽  
Yao-Chun Yao ◽  
Feng Liang

Ni-rich Li(Ni[Formula: see text]Co[Formula: see text]Mn[Formula: see text]O2 cathode material is widely recognized as one of the most cathode materials for lithium-ion batteries due to its high specific capacity, high energy density and low cost. In this paper, the NCM cathode material precursor Ni[Formula: see text]Co[Formula: see text]Mn[Formula: see text](OH)2 was prepared by coprecipitation method and the optimum experimental conditions were investigated. The effects of water bath temperature on the electrochemical performances of the prepared materials were investigated by controlling the morphology. The results showed that 60∘C was the best bath temperature for the precursor which has a regular spheroidal morphology and uniform particles with the diameter of 10[Formula: see text][Formula: see text]m. After coprecipitation, the samples calcined under oxygen atmosphere displayed good electrochemical properties. The discharge specific capacity is up to 194[Formula: see text]mA[Formula: see text][Formula: see text][Formula: see text]h[Formula: see text][Formula: see text][Formula: see text]g[Formula: see text] and 134[Formula: see text]mA[Formula: see text][Formula: see text][Formula: see text]h[Formula: see text][Formula: see text][Formula: see text]g[Formula: see text] at 0.2∘C and 5∘C, respectively. The initial coulombic efficiency is 87.57% at 0.2∘C.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Dongbin Zhang ◽  
Xuzhao Han ◽  
Xianggui Kong ◽  
Fazhi Zhang ◽  
Xiaodong Lei

AbstractCoordination tuning electronic structure of host materials is a quite effective strategy for activating and improving the intrinsic properties. Herein, halogen anion (X−)-incorporated β-FeOOH (β-FeOOH(X), X = F−, Cl−, and Br−) was investigated with a spontaneous adsorption process, which realized a great improvement of supercapacitor performances by adjusting the coordination geometry. Experiments coupled with theoretical calculations demonstrated that the change of Fe–O bond length and structural distortion of β-FeOOH, which is rooted in halogen ions embedment, led to the relatively narrow band gap. Because of the strong electronegativity of X−, the Fe element in β-FeOOH(X)s presented the unexpected high valence state (3 + δ), which is facilitating to adsorb SO32− species. Consequently, the designed β-FeOOH(X)s exhibited the good electric conductivity and enhanced the contact between electrode and electrolyte. When used as a negative electrode, the β-FeOOH(F) showed the excellent specific capacity of 391.9 F g−1 at 1 A g−1 current density, almost tenfold improvement compared with initial β-FeOOH, with the superior rate capacity and cyclic stability. This combinational design principle of electronic structure and electrochemical performances provides a promising way to develop advanced electrode materials for supercapacitor.


Sign in / Sign up

Export Citation Format

Share Document