Betibeglogene autotemcel gene therapy cost effective in transfusion-dependent β-thalassaemia in France

2020 ◽  
Vol 868 (1) ◽  
pp. 5-5
2018 ◽  
Vol 2 (14) ◽  
pp. 1792-1798 ◽  
Author(s):  
Nicoletta Machin ◽  
Margaret V. Ragni ◽  
Kenneth J. Smith

Key Points Gene therapy is cost-effective in severe hemophilia A compared with standard factor VIII prophylaxis. Over a 10-year time horizon, gene therapy cost $1M and resulted in 8.33 QALYs gained, whereas prophylaxis cost $1.7M and resulted in 6.62 QALYs gained.


2018 ◽  
Author(s):  
Ching Lam ◽  
Edward Meinert ◽  
Abrar Alturkistani ◽  
Alison R. Carter ◽  
Jeffrey Karp ◽  
...  

BACKGROUND Decisional tools have demonstrated their importance in informing manufacturing and commercial decisions in the monoclonal antibody domain. Recent approved therapies in regenerative medicine have shown great clinical benefits to patients. OBJECTIVE The objective of this review was to investigate what decisional tools are available and what issues and gaps have been raised for their use in regenerative medicine. METHODS We systematically searched MEDLINE to identify articles on decision support tools relevant to tissue engineering, and cell and gene therapy, with the aim of identifying gaps for future decisional tool development. We included published studies in English including a description of decisional tools in regenerative medicines. We extracted data using a predesigned Excel table and assessed the data both quantitatively and qualitatively. RESULTS We identified 9 articles addressing key decisions in manufacturing and product development challenges in cell therapies. The decision objectives, parameters, assumptions, and solution methods were analyzed in detail. We found that all decisional tools focused on cell therapies, and 6 of the 9 reviews focused on allogeneic cell therapy products. We identified no available tools on tissue-engineering and gene therapy products. These studies addressed key decisions in manufacturing and product development challenges in cell therapies, such as choice of technology, through modeling. CONCLUSIONS Our review identified a limited number of decisional tools. While the monoclonal antibodies and biologics decisional tool domain has been well developed and has shown great importance in driving more cost-effective manufacturing processes and better investment decisions, there is a lot to be learned in the regenerative medicine domain. There is ample space for expansion, especially with regard to autologous cell therapies, tissue engineering, and gene therapies. To consider the problem more comprehensively, the full needle-to-needle process should be modeled and evaluated.


Blood ◽  
1996 ◽  
Vol 87 (12) ◽  
pp. 5095-5103 ◽  
Author(s):  
G Hortelano ◽  
A Al-Hendy ◽  
FA Ofosu ◽  
PL Chang

A potentially cost-effective strategy for gene therapy of hemophilia B is to create universal factor IX-secreting cell lines suitable for implantation into different patients. To avoid graft rejection, the implanted cells are enclosed in alginate-polylysine-alginate microcapsules that are permeable to factor IX diffusion, but impermeable to the hosts' immune mediators. This nonautologous approach was assessed by implanting encapsulated mouse myoblasts secreting human factor IX into allogeneic mice. Human factor IX was detected in the mouse plasma for up to 14 days maximally at approximately 4 ng/mL. Antibodies to human factor IX were detected after 3 weeks at escalating levels, which were sustained throughout the entire experiment (213 days). The antibodies accelerated the clearance of human factor IX from the circulation of the implanted mice and inhibited the detection of human factor IX in the mice plasma in vitro. The encapsulated myoblasts retrieved periodically from the implanted mice up to 213 days postimplantation were viable and continued to secrete human factor IX ex vivo at undiminished rates, hence suggesting continued factor IX gene expression in vivo. Thus, this allogeneic gene therapy strategy represents a potentially feasible alternative to autologous approaches for the treatment of hemophilia B.


Sign in / Sign up

Export Citation Format

Share Document