Implications of Impaired Endurance Performance following Single Bouts of Resistance Training: An Alternate Concurrent Training Perspective

2017 ◽  
Vol 47 (11) ◽  
pp. 2187-2200 ◽  
Author(s):  
Kenji Doma ◽  
Glen B. Deakin ◽  
David J. Bentley
2021 ◽  
Vol 10 (23) ◽  
pp. 5582
Author(s):  
David C. Andrade ◽  
Marcelo Flores-Opazo ◽  
Luis Peñailillo ◽  
Pedro Delgado-Floody ◽  
Johnattan Cano-Montoya ◽  
...  

It has been proposed that the combination of high-intensity aerobic exercises and resistance training (RT) known as concurrent training (CT) could improve metabolic syndrome (MetS) markers, and that the exercise mixture in CT could dampen muscle anaerobic pathways, a result known as the interference effect. However, there is scarce evidence on its effects in women across different ages. Therefore, we sought to determine the effects of a 10-week CT intervention on MetS markers and endurance performance in adult women and compared age-related differences between young, adult, and older participants. A total of 112 women with >1 MetS risk factors were included in the study. Participants were allocated to different groups according to the following cutoff age ranges: 20–29years (y), n = 25; 30–39y, n = 35; 40–49y, n = 43; and 50–59y, n = 53. Participants performed 10 weeks of CT, including resistance training (RT), involving six major muscle groups, and high-intensity interval training (HIIT) in a cycle ergometer. Anthropometric, cardiovascular, metabolic, and performance outcomes were assessed before and after the intervention. The CT induced significant improvements in waist circumference (WC) (20–29y: –2.5; 30–39y: –4.1; 40–49y: –4.2; 50–59y: –2.8 Δcm) and the distance achieved in the six-minute walking test (6Mwt) (20–29y: +47.6; 30–39y: +66.0; 40–49y: +43.0; 50–59y: +58.6 Δm) across all age groups, without significant differences between groups. In addition, a significant correlation was found between 6Mwt and WC, independent of age. In conclusion, our results showed that a 10-week CT intervention improved MetS risk factors in women, suggesting that the beneficial effects promoted by CT are independent of age and confirming CT as an effective, age-independent training regimen to improve metabolic health in women.


2021 ◽  
Vol 51 (5) ◽  
pp. 991-1010
Author(s):  
Henrik Petré ◽  
Erik Hemmingsson ◽  
Hans Rosdahl ◽  
Niklas Psilander

Abstract Background The effect of concurrent training on the development of maximal strength is unclear, especially in individuals with different training statuses. Objective The aim of this systematic review and meta-analysis study was to compare the effect of concurrent resistance and endurance training with that of resistance training only on the development of maximal dynamic strength in untrained, moderately trained, and trained individuals. Methods On the basis of the predetermined criteria, 27 studies that compared effects between concurrent and resistance training only on lower-body 1-repetition maximum (1RM) strength were included. The effect size (ES), calculated as the standardised difference in mean, was extracted from each study, pooled, and analysed with a random-effects model. Results The 1RM for leg press and squat exercises was negatively affected by concurrent training in trained individuals (ES =  – 0.35, p < 0.01), but not in moderately trained ( – 0.20, p = 0.08) or untrained individuals (ES = 0.03, p = 0.87) as compared to resistance training only. A subgroup analysis revealed that the negative effect observed in trained individuals occurred only when resistance and endurance training were conducted within the same training session (ES same session =  – 0.66, p < 0.01 vs. ES different sessions =  – 0.10, p = 0.55). Conclusion This study demonstrated the novel and quantifiable effects of training status on lower-body strength development and shows that the addition of endurance training to a resistance training programme may have a negative impact on lower-body strength development in trained, but not in moderately trained or untrained individuals. This impairment seems to be more pronounced when training is performed within the same session than in different sessions. Trained individuals should therefore consider separating endurance from resistance training during periods where the development of dynamic maximal strength is prioritised.


Author(s):  
Miguel Sánchez-Moreno ◽  
David Rodríguez-Rosell ◽  
David Díaz-Cueli ◽  
Fernando Pareja-Blanco ◽  
Juan José González-Badillo

Purpose: This study analyzed the effects of 3 training interventions: 1 isolated endurance training (ET) and 2 concurrent training (CT), which differed in the velocity loss (VL) magnitude allowed during the resistance training (RT) set: 15% (VL15) versus 45%, on strength and endurance running performance. Methods: A total of 33 resistance- and endurance-trained men were randomly allocated into 3 groups: VL15, VL 45%, and ET. ET was similar across all groups. The CT groups differed in the VL allowed during the RT set. Before and after the 8-week training program the following tests were performed: (1) running sprints, (2) vertical jump, (3) progressive loading test in the squat exercise, and (4) incremental treadmill running test up to maximal oxygen uptake. Results: Significant differences (P < .001) in RT volume (approximately 401 vs 177 total repetitions for VL 45% and VL15, respectively) were observed. Significant “group” × “time” interactions were observed for vertical jump and all strength-related variables: the CT groups attained significantly greater gains than ET. Moreover, a significant “group” × “time” interaction (P = .03) was noted for velocity at maximal oxygen uptake. Although all groups showed increases in velocity at maximal oxygen uptake, the VL15 group achieved greater gains than the ET group. Conclusions: CT interventions experienced greater strength gains than the ET group. Although all groups improved their endurance performance, the VL15 intervention resulted in greater gains than the ET approach. Therefore, moderate VL thresholds in RT performed during CT could be a good strategy for concurrently maximizing strength and endurance development.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10937
Author(s):  
Shiqi Thng ◽  
Simon Pearson ◽  
Justin W.L. Keogh

Background The block phase in the swimming start requires a quick reaction to the starting signal and a large take-off velocity that is primarily horizontal in direction. Due to the principle of specificity of training, there is a potential benefit of performing a greater proportion of horizontal force production exercises in a swimmers’ dry-land resistance training sessions. Therefore, the purpose of this pilot study was to provide an insight into the effects of a horizontal- (HF) vs vertical-force (VF) training intervention on swim start performance. Methods Eleven competitive swimmers (six males (age 20.9 ± 1.8 years, body mass 77.3 ± 9.7 kg, height 1.78 ± 0.05 m) and five females (age 21.4 ± 2.0 years, body mass 67.5 ± 7.4 kg, height 1.69 ± 0.05 m)) completed 2 weekly sessions of either a horizontal- or vertical-force focused resistance training programme for 8 weeks. Squat jump force-time characteristics and swim start kinetic and kinematic parameters were collected pre- and post-intervention. Results Across the study duration, the swimmers completed an average of nine swimming sessions per week with an average weekly swim volume of 45.5 ± 17.7 km (HF group) and 53 ± 20.0 km (VF group), but little practice of the swim start per week (n = 9). Within-group analyses indicated a significant increase in predicted one repetition maximum (1RM) hip thrust strength in the HF group, as well as significant increases in grab resultant peak force but reductions in resultant peak force of the block phase for the VF group. No significant between-group differences in predicted 1RM hip thrust and back squat strength, squat jump force-time and swim start performance measures were observed after 8 weeks of training. Significant correlations in the change scores of five block kinetic variables to time to 5 m were observed, whereby increased block kinetic outputs were associated with a reduced time to 5 m. This may be indicative of individual responses to the different training programmes. Discussion The results of this current study have been unable to determine whether a horizontal- or vertical-force training programme enhances swim start performance after an 8-week training intervention. Some reasons for the lack of within and between group effects may reflect the large volume of concurrent training and the relative lack of any deliberate practice of the swim start. Larger samples and longer training duration may be required to determine whether significant differences occur between these training approaches. Such research should also look to investigate how a reduction in the concurrent training loads and/or an increase in the deliberate practice of the swim start may influence the potential changes in swim start performance.


1997 ◽  
Vol 29 (Supplement) ◽  
pp. 263
Author(s):  
D. Bishop ◽  
D. G. Jenkins ◽  
L. T. Mackinnon ◽  
M. F. Carey ◽  
M. McEniery

1993 ◽  
Vol 18 (1) ◽  
pp. 104-115 ◽  
Author(s):  
G. J. Bell ◽  
D. G. Syrotuik ◽  
K. Attwood ◽  
H. A. Quinney

This study investigated the retention of strength gained after resistance training, while performing aerobic endurance training. Following a 10-week resistance training program (three times a week) that included maintenance aerobic endurance training (twice a week), 18 varsity oarswomen were matched on strength and randomly assigned to two groups: Group 1 performed maintenance resistance training once a week and Group 2 performed resistance training twice a week. Both groups performed endurance training four times a week during the 6-week maintenance resistance training program. There was a significant increase in strength (multiple-RM test) for three upper and three lower body exercises after the initial 10-week resistance training program. A further significant increase in two exercises (inclined leg press and knee flexion) were observed after 6 weeks of maintenance resistance training and endurance training in both groups. No further significant increases were observed in the four other exercises during maintenance strength training. These latter findings occurred at the same time that VO2max and ventilation threshold increased. These results suggest that strength gains can be maintained with resistance training once or twice a week while focusing on improving aerobic endurance performance without compromising the latter. Key words: repetition maximum, ventilation threshold, endurance performance


2017 ◽  
Vol 39 (03) ◽  
pp. 163-172 ◽  
Author(s):  
Raúl Domínguez ◽  
José Maté-Muñoz ◽  
Noemí Serra-Paya ◽  
Manuel Garnacho-Castaño

AbstractIn resistance training, load intensity is usually calculated as the percentage of a maximum repetition (1RM) or maximum number of possible repetitions (% of 1RM). Some studies have proposed a lactate threshold (LT) intensity as an optimal approach for concurrent training of cardiorespiratory endurance and muscle strength, as well as an alternative in resistance training. The objective of the present study was to analyze the results obtained in research evaluating the use of LT in resistance training. A keyword and search tree strategy identified 14 relevant articles in the Dialnet, Elsevier, Medline, Pubmed, Scopus and Web of Science databases. Based on the studies analyzed, the conclusion was that the LT in resistance exercises can be determined either by mathematical methods or by visual inspection of graphical plots. Another possibility is to measure the intensity at which LT might coincide with the first ventilatory threshold (VT1). Since performing an exercise session at one’s LT intensity has been shown to accelerate the cardiorespiratory response and induce neuromuscular fatigue, this intensity could be used to set the training load in a resistance training program.


Author(s):  
Rodrigo Ferrari ◽  
Cristine Lima Alberton ◽  
Stephanie Santana Pinto ◽  
Eduardo Lusa Cadore ◽  
Ronei Silveira Pinto ◽  
...  

Abstract This study compared the effects of using continuous and interval aerobic exercise during concurrent training on cardiorespiratory adaptations in women. Thirty-two participants were randomly assigned into one of the following groups: continuous running and resistance training (C-RUN, n = 10), interval running and resistance training (I-RUN, n = 11), or control group that performed resistance training only (RT, n = 11). Each group trained twice a week during 11 weeks. Oxygen uptake corresponding to the first ventilatory threshold (VO2VT1), second ventilatory threshold (VO2VT2) and maximal effort (VO2max) was measured in a maximal incremental test performed before and after training. Significant increases in VO2VT1, VO2VT2 and VO2max were observed in all training groups. VO2VT2 and VO2max presented time-group interactions, indicating that the magnitude of the increase in these variables was dependent on the training group (VO2VT2: C-Run = 6.6%, I-Run = 15.7%, RT = 1.7%; VO2max: C-Run = 7.2%, I-Run = 14.3%, RT = 2.7%). The effect size observed for post-training values comparing C-RUN and RT groups was d = 0.566 for VO2VT2 and d = 0.442 for VO2max. On the other hand, values of d = 0.949 for VO2VT2 and d = 1.189 for VO2max were verified between I-RUN and RT groups. In conclusion, the use of continuous and interval aerobic exercise during concurrent training improved different cardiorespiratory parameters in women, but in a greater magnitude when interval aerobic exercise was performed simultaneously to resistance training.


Sign in / Sign up

Export Citation Format

Share Document