Particle filter-based data assimilation technique for the evaluation of transport of pollutants in small rivers

2020 ◽  
Vol 39 (3) ◽  
Author(s):  
Ruan Rezende Faria ◽  
Wellington Betencurte da Silva ◽  
Julio Cesar Sampaio Dutra ◽  
José Mir Justino da Costa
Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 900
Author(s):  
Ioanna Skoulidou ◽  
Maria-Elissavet Koukouli ◽  
Arjo Segers ◽  
Astrid Manders ◽  
Dimitris Balis ◽  
...  

In this work, we investigate the ability of a data assimilation technique and space-borne observations to quantify and monitor changes in nitrogen oxides (NOx) emissions over Northwestern Greece for the summers of 2018 and 2019. In this region, four lignite-burning power plants are located. The data assimilation technique, based on the Ensemble Kalman Filter method, is employed to combine space-borne atmospheric observations from the high spatial resolution Sentinel-5 Precursor (S5P) Tropospheric Monitoring Instrument (TROPOMI) and simulations using the LOTOS-EUROS Chemical Transport model. The Copernicus Atmosphere Monitoring Service-Regional European emissions (CAMS-REG, version 4.2) inventory based on the year 2015 is used as the a priori emissions in the simulations. Surface measurements of nitrogen dioxide (NO2) from air quality stations operating in the region are compared with the model surface NO2 output using either the a priori (base run) or the a posteriori (assimilated run) NOx emissions. Relative to the a priori emissions, the assimilation suggests a strong decrease in concentrations for the station located near the largest power plant, by 80% in 2019 and by 67% in 2018. Concerning the estimated annual a posteriori NOx emissions, it was found that, for the pixels hosting the two largest power plants, the assimilated run results in emissions decreased by ~40–50% for 2018 compared to 2015, whereas a larger decrease, of ~70% for both power plants, was found for 2019, after assimilating the space-born observations. For the same power plants, the European Pollutant Release and Transfer Register (E-PRTR) reports decreased emissions in 2018 and 2019 compared to 2015 (−35% and −38% in 2018, −62% and −72% in 2019), in good agreement with the estimated emissions. We further compare the a posteriori emissions to the reported energy production of the power plants during the summer of 2018 and 2019. Mean decreases of about −35% and−63% in NOx emissions are estimated for the two larger power plants in summer of 2018 and 2019, respectively, which are supported by similar decreases in the reported energy production of the power plants (~−30% and −70%, respectively).


2006 ◽  
Vol 21 (4) ◽  
pp. 663-669 ◽  
Author(s):  
Dongliang Wang ◽  
Xudong Liang ◽  
Yihong Duan ◽  
Johnny C. L. Chan

Abstract The fifth-generation Pennsylvania State University–National Center for Atmospheric Research nonhydrostatic Mesoscale Model is employed to evaluate the impact of the Geostationary Meteorological Satellite-5 water vapor and infrared atmospheric motion vectors (AMVs), incorporated with the four-dimensional variational (4DVAR) data assimilation technique, on tropical cyclone (TC) track predictions. Twenty-two cases from eight different TCs over the western North Pacific in 2002 have been examined. The 4DVAR assimilation of these satellite-derived wind observations leads to appreciable improvements in the track forecasts, with average reductions in track error of ∼5% at 12 h, 12% at 24 h, 10% at 36 h, and 7% at 48 h. Preliminary results suggest that the improvement depends on the quantity of the AMV data available for assimilation.


Agriculture ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 606
Author(s):  
Alaa Jamal ◽  
Raphael Linker

Particle filter has received increasing attention in data assimilation for estimating model states and parameters in cases of non-linear and non-Gaussian dynamic processes. Various modifications of the original particle filter have been suggested in the literature, including integrating particle filter with Markov Chain Monte Carlo (PF-MCMC) and, later, using genetic algorithm evolutionary operators as part of the state updating process. In this work, a modified genetic-based PF-MCMC approach for estimating the states and parameters simultaneously and without assuming Gaussian distribution for priors is presented. The method was tested on two simulation examples on the basis of the crop model AquaCrop-OS. In the first example, the method was compared to a PF-MCMC method in which states and parameters are updated sequentially and genetic operators are used only for state adjustments. The influence of ensemble size, measurement noise, and mutation and crossover parameters were also investigated. Accurate and stable estimations of the model states were obtained in all cases. Parameter estimation was more challenging than state estimation and not all parameters converged to their true value, especially when the parameter value had little influence on the measured variables. Overall, the proposed method showed more accurate and consistent parameter estimation than the PF-MCMC with sequential estimation, which showed highly conservative behavior. The superiority of the proposed method was more pronounced when the ensemble included a large number of particles and the measurement noise was low.


2020 ◽  
Author(s):  
Bertrand Cluzet ◽  
Matthieu Lafaysse ◽  
Emmanuel Cosme ◽  
Clément Albergel ◽  
Louis-François Meunier ◽  
...  

Abstract. Monitoring the evolution of the snowpack properties in mountainous areas is crucial for avalanche hazard forecasting and water resources management. In-situ and remotely sensed observations provide precious information on the snowpack but usually offer a limited spatio-temporal coverage of bulk or surface variables only. In particular, visible-near infrared (VIS-NIR) reflectance observations can inform on the snowpack surface properties but are limited by terrain shading and clouds. Snowpack modelling enables to estimate any physical variable, virtually anywhere, but is affected by large errors and uncertainties. Data assimilation offers a way to combine both sources of information, and to propagate information from observed areas to non observed areas. Here, we present CrocO, (Crocus-Observations) an ensemble data assimilation system able to ingest any snowpack observation (applied as a first step to the height of snow (HS) and VIS-NIR reflectances) in a spatialised geometry. CrocO uses an ensemble of snowpack simulations to represent modelling uncertainties, and a Particle Filter (PF) to reduce them. The PF is known to collapse when assimilating a too large number of observations. Two variants of the PF were specifically implemented to ensure that observations information is propagated in space while tackling this issue. The global algorithm ingests all available observations with an iterative inflation of observation errors, while the klocal algorithm is a localised approach performing a selection of the observations to assimilate based on background correlation patterns. Experiments are carried out in a twin experiment setup, with synthetic observations of HS and VIS-NIR reflectances available in only a 1/6th of the simulation domain. Results show that compared against runs without assimilation, analyses exhibit an average improvement of snow water equivalent Continuous Rank Probability Score (CRPS) of 60 % when assimilating HS with a 40-member ensemble, and an average 20 % CRPS improvement when assimilating reflectance with a 160-member ensemble. Significant improvements are also obtained outside the observation domain. These promising results open a way for the assimilation of real observations of reflectance, or of any snowpack observations in a spatialised context.


2019 ◽  
Vol 147 (4) ◽  
pp. 1107-1126 ◽  
Author(s):  
Jonathan Poterjoy ◽  
Louis Wicker ◽  
Mark Buehner

Abstract A series of papers published recently by the first author introduce a nonlinear filter that operates effectively as a data assimilation method for large-scale geophysical applications. The method uses sequential Monte Carlo techniques adopted by particle filters, which make no parametric assumptions for the underlying prior and posterior error distributions. The filter also treats the underlying dynamical system as a set of loosely coupled systems to effectively localize the effect observations have on posterior state estimates. This property greatly reduces the number of particles—or ensemble members—required for its implementation. For these reasons, the method is called the local particle filter. The current manuscript summarizes algorithmic advances made to the local particle filter following recent tests performed over a hierarchy of dynamical systems. The revised filter uses modified vector weight calculations and probability mapping techniques from earlier studies, and new strategies for improving filter stability in situations where state variables are observed infrequently with very accurate measurements. Numerical experiments performed on low-dimensional data assimilation problems provide evidence that supports the theoretical benefits of the new improvements. As a proof of concept, the revised particle filter is also tested on a high-dimensional application from a real-time weather forecasting system at the NOAA/National Severe Storms Laboratory (NSSL). The proposed changes have large implications for researchers applying the local particle filter for real applications, such as data assimilation in numerical weather prediction models.


2018 ◽  
Vol 12 (7) ◽  
pp. 2287-2306 ◽  
Author(s):  
Gaia Piazzi ◽  
Guillaume Thirel ◽  
Lorenzo Campo ◽  
Simone Gabellani

Abstract. The accuracy of hydrological predictions in snow-dominated regions deeply depends on the quality of the snowpack simulations, with dynamics that strongly affect the local hydrological regime, especially during the melting period. With the aim of reducing the modelling uncertainty, data assimilation techniques are increasingly being implemented for operational purposes. This study aims to investigate the performance of a multivariate sequential importance resampling – particle filter scheme, designed to jointly assimilate several ground-based snow observations. The system, which relies on a multilayer energy-balance snow model, has been tested at three Alpine sites: Col de Porte (France), Torgnon (Italy), and Weissfluhjoch (Switzerland). The implementation of a multivariate data assimilation scheme faces several challenging issues, which are here addressed and extensively discussed: (1) the effectiveness of the perturbation of the meteorological forcing data in preventing the sample impoverishment; (2) the impact of the parameter perturbation on the filter updating of the snowpack state; the system sensitivity to (3) the frequency of the assimilated observations, and (4) the ensemble size.The perturbation of the meteorological forcing data generally turns out to be insufficient for preventing the sample impoverishment of the particle sample, which is highly limited when jointly perturbating key model parameters. However, the parameter perturbation sharpens the system sensitivity to the frequency of the assimilated observations, which can be successfully relaxed by introducing indirectly estimated information on snow-mass-related variables. The ensemble size is found not to greatly impact the filter performance in this point-scale application.


Sign in / Sign up

Export Citation Format

Share Document