Rotational viscosity effect on the stability of finite journal bearings lubricated by ferrofluids

Author(s):  
Khalil Atlassi ◽  
Mohamed Nabhani ◽  
Mohamed El Khlifi
2019 ◽  
Vol 71 (1) ◽  
pp. 31-39
Author(s):  
Subrata Das ◽  
Sisir Kumar Guha

Purpose The purpose of this paper is to investigate the effect of turbulence on the stability characteristics of finite hydrodynamic journal bearing lubricated with micropolar fluid. Design/methodology/approach The non-dimensional transient Reynolds equation has been solved to obtain the non-dimensional pressure field which in turn used to obtain the load carrying capacity of the bearing. The second-order equations of motion applicable for journal bearing system have been solved using fourth-order Runge–Kutta method to obtain the stability characteristics. Findings It has been observed that turbulence has adverse effect on stability and the whirl ratio at laminar flow condition has the lowest value. Practical implications The paper provides the stability characteristics of the finite journal bearing lubricated with micropolar fluid operating in turbulent regime which is very common in practical applications. Originality/value Non-linear stability analysis of micropolar fluid lubricated journal bearing operating in turbulent regime has not been reported in literatures so far. This paper is an effort to address the problem of non-linear stability of journal bearings under micropolar lubrication with turbulent effect. The results obtained provide useful information for designing the journal bearing system for high speed applications.


2000 ◽  
Vol 123 (3) ◽  
pp. 651-654 ◽  
Author(s):  
K. Raghunandana ◽  
B. C. Majumdar, and ◽  
R. Maiti

The purpose of this paper is to study the effect of non-Newtonian lubricant on the stability of oil film journal bearings mounted on flexible support using linear perturbation technique. The model of non-Newtonian lubricant developed by Dien and Elrod is taken into consideration. The dynamic co-coefficients are calculated for different values of power law index and length to diameter ratio. These are then used to find stability margin for different support parameters to study the effect of the non-Newtonian lubricant.


Author(s):  
Hongyang Hu ◽  
Ming Feng ◽  
Tianming Ren

The upscaling of turbomachinery using gas foil journal bearings (GFJBs) is limited because of their limited load capacity and dynamic stability. The improvement potential of shim foil inserted under the bump foil of such bearings is investigated in terms of better bearing performance. The arch height difference Δ hb between the shim foil and bump foil can be zero or not to attain the different effect. By considering the local hardening structural stiffness and an Initial installation clearance due to the shim foil, the static and dynamic characteristics of the novel bearing were calculated through the finite difference method (FDM) and perturbation method, respectively. In the analysis, a modified bump stiffness model considering the variable foil thickness was established, and a 2 D thick plate model was adopted for the top foil. The characteristics of novel GFJB with and without preload were compared with the traditional bearing. The results indicate that the load capacity and direct stiffness of the novel GFJB with shim foil can be increased largely, especially when there is a preload (Δ hb≠0). And the improvement is reinforced as the increment of Δ hb. Moreover, the stability threshold speed ( STS) of rotor supported by the novel GFJBs is enhanced by the preload, which means better stability. In addition, an air compressor test has also been conducted to verify the improved supporting performance of novel bearings. Based on this study it is convinced that the addition of shim foil under a GFJB's bump foil can be of practical interest in the quest of enhanced load capacity and dynamic stability. Moreover, the installation of shim foil is not affected by the working environment and could even be retrofited on the existing GFJBs.


1999 ◽  
Vol 121 (1) ◽  
pp. 198-201 ◽  
Author(s):  
Ram Turaga ◽  
A. S. Sekhar ◽  
B. C. Majumdar

The subsynchronous whirl stability limit of a rigid rotor supported on two symmetrical finite journal bearings has been studied using the linearised perturbation method and the nonlinear transient analysis technique. A quantitative comparison for journal bearings with different l/d ratios has been provided.


Author(s):  
Ram Turaga

The influence of deterministic surface texture on the sub-synchronous whirl stability of a rigid rotor has been studied. Non-linear transient stability analysis has been performed to study the stability of a rigid rotor supported on two symmetric journal bearings with a rectangular dimple of large aspect ratio. The surface texture parameters considered are dimple depth to minimum film thickness ratio and the location of the dimple on the bearing surface. Journal bearings of different Length to diameter ratios have been studied. The governing Reynolds equation for finite journal bearings with incompressible fluid has been solved using the Finite Element Method under isothermal conditions. The trajectories of the journal center have been obtained by solving the equations of motion of the journal center by the fourth-order Runge-Kutta method. When the dimple is located in the raising part of the pressure curve the positive rectangular dimple is seen to decrease the stability whereas the negative rectangular dimple is seen to improve the stability of the rigid rotor.


Sign in / Sign up

Export Citation Format

Share Document