The Effects of Alcohol and Cannabis Co-use on Neurocognitive Function, Brain Structure, and Brain Function

Author(s):  
Margaret F. Bedillion ◽  
Sara K. Blaine ◽  
Eric D. Claus ◽  
Emily B. Ansell
2009 ◽  
Vol 24 (S1) ◽  
pp. 1-1
Author(s):  
J. Maltez ◽  
D. Dias ◽  
H. Silva

After decades of neuroscientific research and taxonomic endeavour in psychiatry the quest for biologic markers specific enough to accommodate nosologic categories has not succeeded. Yet, neurophysiology and neuroimaging have developed pwoerful tools to investigate brain function. An immense amount of data has been accumulated regarding normal and pathologic information processing, cognition, emotion and other domains. Some have been correlated with genes underpinning diseases and are candidate endophenotypes. These stand at an intermediate level between genes and phenotype. They encompass several kinds of dysfunctions or abnormalities in brain structure. Rather than matching to singular diagnostic categories, as we devise them today, the same endophenotype is usually shared by distinct pathologic entities. Assuming tha they reflect specif dysfunctions this raises critical questions regarding the DSM way of classifying mental disorders and to the understanding of the neurobiologic phenomena underlying them. It is the purpose of this presentation to discuss these questions and review some of the data, including our own, concerning event-related potentials endophenotypes of psychosis with special focus on the schizophrenia-bipolar dichotomy and present.


2010 ◽  
Vol 68 (1) ◽  
pp. 105-107 ◽  
Author(s):  
Heike Tost ◽  
Barbara K. Lipska ◽  
Radhakrishna Vakkalanka ◽  
Herve Lemaitre ◽  
Joseph H. Callicott ◽  
...  

Neuroforum ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Meltem Kiyar ◽  
Sarah Collet ◽  
Guy T’Sjoen ◽  
Sven C. Mueller

AbstractTransgender persons identify with a gender different from the one they were assigned at birth. Although describing oneself as transgender is not a new phenomenon, media attention has lately been increasing exponentially, thanks to progressive changes in laws and change in societal attitudes. These changes also allow more people nowadays to (openly) identify as transgender and/or seek gender-affirming treatment. However, simultaneously, not much is presently understood about the underlying neurobiology, and specifically the brain structure and brain function of transgender persons. One major question in neuroimaging and neuroscience has been to determine whether, at the brain level, transgender people resemble more their gender identity, their sex assigned at birth, or have a unique neural profile. Although the evidence is presently inconsistent, it suggests that while the brain structure, at least before hormonal treatment, is more similar to sex assigned at birth, it may shift with hormonal treatment. By contrast, on “sex-stereotypical tasks,” brain function may already be more similar to gender identity in transgender persons, also before receiving gender-affirming hormone treatment. However, studies continue to be limited by small sample sizes and new initiatives are needed to further elucidate the neurobiology of a ‘brain gender’ (sex-dimorphic change according to one’s gender).


2021 ◽  
Author(s):  
Alessandra Griffa ◽  
Enrico Amico ◽  
Raphael Liegeois ◽  
Dimitri Van De Ville ◽  
Maria Giulia Preti

Brain signatures of functional activity have shown promising results in both decoding brain states; i.e., determining whether a subject is at rest or performing a given task, and fingerprinting, that is identifying individuals within a large group. Importantly, these brain signatures do not account for the underlying brain anatomy on which brain function takes place. Here, we leveraged brain structure-function coupling as a new imaging-based biomarker to characterize tasks and individuals. We used multimodal magnetic resonance imaging and the recently introduced Structural-Decoupling Index (SDI) to quantify regional structure-function interplay in 100 healthy volunteers from the Human Connectome Project, both during rest and seven different tasks. SDI allowed accurate classifications for both decoding and fingerprinting, outperforming functional signatures. Further, SDI profiles in resting-state correlated with individual cognitive traits. These results show that brain structure-function interplay contains unique information which provides a new class of signatures of brain organization and cognition.


Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3009
Author(s):  
Katie Louise Tooley

Enhancing or preserving cognitive performance of personnel working in stressful, demanding and/or high tempo environments is vital for optimal performance. Emerging research suggests that the human gut microbiota may provide a potential avenue to enhance cognition. This review examines the relationship between the human gut microbiota, including modulators of the microbiota on cognition and/or brain function. For this narrative review, a total of n = 17 relevant human research items of a possible 1765 published between January 2010 and November 2018 were identified. Two overarching design methods for synthesis were observed: correlational or pre/post intervention. Limited correlational design studies linking microbiota to cognitive/brain structure endpoints existed (n = 5); however, correlations between microbiota diversity and enhanced cognitive flexibility and executive function were observed. Gut microbiota intervention studies to improve cognition or brain function (n = 12) generally resulted in improved cognition (11/12), in which improvements were observed in visuospatial memory, verbal learning and memory, and aspects of attentional vigilance. Limited studies were available to draw a detailed conclusion; however, available evidence suggests that gut microbiota is linked to cognitive performance and that manipulation of gut microbiota could be a promising avenue for enhancing cognition which warrants further research.


2020 ◽  
Vol 4 ◽  
pp. 239821282096170
Author(s):  
Richard N. Henson ◽  
Sana Suri ◽  
Ethan Knights ◽  
James B. Rowe ◽  
Rogier A. Kievit ◽  
...  

Polymorphisms in the apolipoprotein E (APOE) gene have been associated with individual differences in cognition, brain structure and brain function. For example, the ε4 allele has been associated with cognitive and brain impairment in old age and increased risk of dementia, while the ε2 allele has been claimed to be neuroprotective. According to the ‘antagonistic pleiotropy’ hypothesis, these polymorphisms have different effects across the lifespan, with ε4, for example, postulated to confer benefits on cognitive and brain functions earlier in life. In this stage 2 of the Registered Report – https://osf.io/bufc4 , we report the results from the cognitive and brain measures in the Cambridge Centre for Ageing and Neuroscience cohort ( www.cam-can.org ). We investigated the antagonistic pleiotropy hypothesis by testing for allele-by-age interactions in approximately 600 people across the adult lifespan (18–88 years), on six outcome variables related to cognition, brain structure and brain function (namely, fluid intelligence, verbal memory, hippocampal grey-matter volume, mean diffusion within white matter and resting-state connectivity measured by both functional magnetic resonance imaging and magnetoencephalography). We found no evidence to support the antagonistic pleiotropy hypothesis. Indeed, Bayes factors supported the null hypothesis in all cases, except for the (linear) interaction between age and possession of the ε4 allele on fluid intelligence, for which the evidence for faster decline in older ages was ambiguous. Overall, these pre-registered analyses question the antagonistic pleiotropy of APOE polymorphisms, at least in healthy adults.


Sign in / Sign up

Export Citation Format

Share Document