scholarly journals Tribological and anti-corrosion performance of epoxy resin composite coatings reinforced with differently sized cubic boron nitride (CBN) particles

Friction ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 104-118 ◽  
Author(s):  
Zhiping Huang ◽  
Wenjie Zhao ◽  
Wenchao Zhao ◽  
Xiaojing Ci ◽  
Wentao Li

Abstract A series of high solid content (30 wt%) epoxy resin (EP) composite coatings reinforced with differently sized cubic boron nitride (CBN) particles were fabricated successfully on 304L stainless steel. Polydopamine (PDA) was used to improve the dispersibility of CBN particles in EP. The structural and morphological features of the CBN particles and the composite coatings were characterized by Raman spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Moreover, a UMT-3 tribometer and surface profiler were used to investigate the tribological behaviors of the as-prepared composite coatings. Electrochemical impedance spectroscopy (EIS) and Tafel analysis were used to investigate the coatings’ anti-corrosion performance. The results demonstrated that the CBN fillers could effectively enhance the tribological and anti-corrosion properties of the EP composite coatings. In addition, when the additive proportion of the microsized (5 μm) and nanosized (550 nm) CBN particles was 1:1, the tribological property of the EP composite coatings was optimal for dry sliding, which was attributed to the load carrying capability of the microsized CBN particles and the toughening effect of the nanosized CBN particles. However, when the additive proportion of the microsized and nanosized CBN particles was 2:1, the tribology and corrosion resistance performance were optimal in seawater conditions. We ascribed this to the load-carrying capacity of the microparticles, which played a more important role under the seawater lubrication condition, and the more compact structure, which improved the electrolyte barrier ability for the composite coatings.

Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 135
Author(s):  
Kathleen Jaffré ◽  
Benoît Ter-Ovanessian ◽  
Hiroshi Abe ◽  
Nicolas Mary ◽  
Bernard Normand ◽  
...  

The effect of dry grinding on 304L stainless steel’s passive behavior is compared to two other surface finishing (mechanical polishing down to 2400 with SiC emery paper and 1 µm with diamond paste, respectively). The characterization of the surface state was performed using scanning electron microscopy, transmission electron microscopy, 3D optical profilometer, and X-ray diffraction. Results indicate that each surface treatment leads to different surface states. The ground specimens present an ultrafine grain layer and a strong plastic deformation underneath the surface, while an ultrafine grain layer characterizes the subsurface of the polished specimens. Grinding induces high residual compressive stresses and high roughness compared to polishing. The characterization of the passive films was performed by electrochemical impedance spectroscopy and Mott–Schottky analysis. The study shows that the semiconductor properties and the thickness of the passive films are dependent on the surface state of the 304L stainless steel.


2012 ◽  
Vol 258 (17) ◽  
pp. 6384-6390 ◽  
Author(s):  
Yingke Kang ◽  
Xinhua Chen ◽  
Shiyong Song ◽  
Laigui Yu ◽  
Pingyu Zhang

1991 ◽  
Vol 235 ◽  
Author(s):  
Daniel J. Kester ◽  
Russell Messier

ABSTRACTBoron nitride thin films were grown using ion beam assisted deposition. Boron metal was evaporated, and the depositing film was bombarded by nitrogen and argon ions. The films were characterized using Fourier transform infrared spectroscopy, electron diffraction, transmission electron microscopy, and Rutherford backscattering. The thin films were found to be cubic boron nitride, consisting of 100–200 Å crystallites with a small amount of an amorphous secondary phase. The best conditions for depositing cubic boron nitride were found to be a substrate temperature of 400°C, bombardment by a 50:50 mixture of argon and nitrogen with a bombarding ion energy of 500 eV and a ratio of bombarding ions to depositing boron atoms of from 1.0 to 1.5 ions per atom.


Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 833 ◽  
Author(s):  
Xu Zhao ◽  
Yuhong Qi ◽  
Zhanping Zhang ◽  
Kejiao Li

Waterborne silicate composite coatings were prepared to replace existing solvent-based coatings for ships. A series of complex coatings were prepared by adding anticorrosive pigments to the silicate resin. Adhesion, pencil hardness, and impact resistance were investigated, and corrosion performance in 3.5% NaCl solution was measured by electrochemical impedance spectroscopy (EIS). The results show that adhesion and impact resistance are high, and that pencil hardness can reach 4H. The curing mechanism for the coatings were investigated by Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The mechanism of curing reaction in the studied waterborne silicate paint was found to be different from that reported in the literature. When the coatings were immersed in 3.5% NaCl solution for 8 h, there is only one time constant in the Bode plot, and coating capacitance (Qc) gradually increases while coating resistance (Rc) gradually decreases. Glass flake composite coatings have better corrosion resistance by comprehensive comparison of Qc and Rc.


2014 ◽  
Vol 292 ◽  
pp. 432-437 ◽  
Author(s):  
M. Conradi ◽  
A. Kocijan ◽  
D. Kek-Merl ◽  
M. Zorko ◽  
I. Verpoest

Sign in / Sign up

Export Citation Format

Share Document