scholarly journals The Influence of Glass Flake and Micaceous Iron Oxide on Electrochemical Corrosion Performance of Waterborne Silicate Coatings in 3.5% NaCl Solution

Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 833 ◽  
Author(s):  
Xu Zhao ◽  
Yuhong Qi ◽  
Zhanping Zhang ◽  
Kejiao Li

Waterborne silicate composite coatings were prepared to replace existing solvent-based coatings for ships. A series of complex coatings were prepared by adding anticorrosive pigments to the silicate resin. Adhesion, pencil hardness, and impact resistance were investigated, and corrosion performance in 3.5% NaCl solution was measured by electrochemical impedance spectroscopy (EIS). The results show that adhesion and impact resistance are high, and that pencil hardness can reach 4H. The curing mechanism for the coatings were investigated by Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The mechanism of curing reaction in the studied waterborne silicate paint was found to be different from that reported in the literature. When the coatings were immersed in 3.5% NaCl solution for 8 h, there is only one time constant in the Bode plot, and coating capacitance (Qc) gradually increases while coating resistance (Rc) gradually decreases. Glass flake composite coatings have better corrosion resistance by comprehensive comparison of Qc and Rc.

Coatings ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 415 ◽  
Author(s):  
Zhao ◽  
Qi ◽  
Zhang ◽  
Li ◽  
Li

The anticorrosive composite coatings based on waterborne silicate were prepared to replace existing solvent-based coatings suitable for ships. A series of composite coatings were prepared by adding zinc powder and micaceous iron oxide to the waterborne silicate resin. The adhesion, pencil hardness and impact resistance of the coatings were investigated and corrosion performance in seawater is characterized by electrochemical impedance spectroscopy (EIS). The results show that coatings have excellent adhesion and impact resistance and their pencil hardness can reach up to 4H. During the immersion of composite coatings in seawater for 8 h, only one time constant appears in the Bode plot, coating capacitance (Qc) gradually increases but dispersion coefficient (n) and coating resistance (Rc) gradually decrease. The breakpoint frequency formula was deduced, considering the dispersion effect. With the increase of micaceous iron oxide, the fluctuation of breakpoint frequency with immersion time is weakened. It can be used to evaluate the corrosion resistance of inorganic anticorrosive coatings in seawater. In addition, different penetration models of corrosive media were proposed for the coatings with low or high content of micaceous iron oxide.


2006 ◽  
Vol 530-531 ◽  
pp. 111-116
Author(s):  
M.C.E. Bandeira ◽  
F.D. Prochnow ◽  
Isolda Costa ◽  
César V. Franco

Nd-Fe-B magnets present outstanding magnetic properties. However, due to their low corrosion resistance, their applications are limited to non-corrosive environments. Nowadays, significant efforts are underway to increase the corrosion resistance of these materials, through the use of coatings. Herein are presented the results of a study on the corrosion resistance of Nd-Fe-B magnets coated with polypyrrole (PPY). The electrochemical behavior of coated and uncoated magnets has been studied by Electrochemical Impedance spectroscopy (EIS) in synthetic saliva. The results were compared to previous investigations, which were carried out under similar conditions, in Na2SO4 and NaCl solutions. In sulphate solution, the corrosion resistance of the PPY-coated magnet was 3 times larger (1600 .cm2) than that of uncoated magnet (500 .cm2). In NaCl solution, however, the corrosion resistance of coated and uncoated magnets were very similar (250 .cm2). In synthetic saliva, both the uncoated and coated magnets presented good corrosion performance (1940 .cm2). Such behavior can be attributed to the phosphate ions in saliva, which play a role as corrosion inhibitor, producing phosphating, at least partially, of the magnet surface. The PPY-coated magnets presented a strong diffusional control from moderate to low frequencies, caused by the polypyrrole film. The thicker PPY film increased the corrosion resistance of the magnet in synthetic saliva.


MRS Advances ◽  
2020 ◽  
Vol 5 (40-41) ◽  
pp. 2129-2137 ◽  
Author(s):  
Wenwen Dou ◽  
Wen Li ◽  
Yuchen Cai ◽  
Mengyao Dong ◽  
Xiaojing Wang ◽  
...  

ABSTRACTTo improve the corrosion resistance and to increase the hardness of copper substrate in marine environment, the Cu-Ni/Ni-P composite coatings were prepared on the copper substrate using the galvanostatic electrolytic deposition method. The deposition current densities were explored to find the optimized deposition conditions for forming the composite coatings. Corrosion resistance properties were analyzed using the polarization curves and electrochemical impedance spectroscopy (EIS). Considering the corrosion resistance and hardness, the −20 mA/cm2 was selected to deposit Cu-Ni coatings on copper substrate and the −30 mA/cm2 was selected to deposit Ni-P coating on the Cu-Ni layer. The Cu-Ni/Ni-P composite coatings not only exhibited superior corrosion resistance compared to single Cu-Ni coating in 3.5 wt.% NaCl solution, but also showed much better mechanical properties than single Cu-Ni coating.


Coatings ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 444
Author(s):  
Jingtao Wang ◽  
Yuhong Qi ◽  
Xu Zhao ◽  
Zhanping Zhang

In order to develop waterborne silicate anticorrosive coatings to replace solvent-based anticorrosive coatings used widely in the shipping industry, epoxy modified silicate emulsions were synthesized with different contents of epoxy resin, then aqueous silicate zinc-rich coatings were prepared with the synthesized silicate emulsion, triethylamine, and zinc powder. The influence of the content of epoxy on the properties and chemical structure of the modified emulsion, mechanical properties of the silicate coatings, and corrosion behavior of the silicate zinc-rich coatings in 3.5% NaCl solution were investigated. The coating samples on steel were measured by the immersion test, Tafel polarization test, and electrochemical impedance spectroscopy (EIS) test with different immersion times. The results showed that epoxy modified silicate emulsions were successfully synthesized. With the increase in epoxy content, the viscosity and solid content of the modified emulsion increased, the impact resistance of the silicate coating rose, the pencil hardness decreased, but the adhesion was not affected. Epoxy modification can reduce, to a certain extent, the corrosion driving force of the zinc rich coating and increase the impedance of the zinc-rich coating, which decreases with the increase of immersion time in 3.5% NaCl solution. With the increase in the epoxy content, the impedance value of the zinc-rich coating increases, indicating that the ability of the coating to resist corrosive media is enhanced.


2019 ◽  
Vol 272 ◽  
pp. 01001
Author(s):  
Nadia HAMMOUDA ◽  
Kamel BELMOKRE

The purpose of the different operations under the term surface preparation is to get a clean surface able to be coated. It is essential to adapt this preparation in terms of the metallurgical nature of the substrate, cleanliness, its shape and roughness. Surface preparations especially the operations of sandblasting, polishing, or grinding prove of capital importance. It allows to modify the superficial properties of these materials, after these treatments the surface becomes very active. This paper evaluates the mechanical surface treatments effect by sandblasting (Sa 1.5 and Sa 2.5) on the electrochemical corrosion characteristics of C-1020 carbon steel in 3% NaCl solution electrolyte simulating aggressive sea atmosphere. Investigations are conducted using stationary (free potential "E-t, polarization curves "E-i", the Tafel rights and the Rp) and nonstationary electrochemical tools such as electrochemical impedance. The results obtained allowed us to highlight that sandblasted carbon steel degrades with immersion time because of the roughness of the surface. These results were confirmed by the plot of the electrochemical impedance diagrams, confirming that the process governing kinetics is under charge transfer control. Good protection against corrosion cannot be obtained only with a good surface preparation of the adapted steel.


2018 ◽  
Vol 18 ◽  
pp. 19-26
Author(s):  
Nadjette Belhamra ◽  
Abd Raouf Boulebtina ◽  
Khadidja Belassadi ◽  
Abdelouahed Chala ◽  
Malika Diafi

The purpose of this paper was to investigate the effect of Al2O3 and TiO2 nanoparticles contents on structural proporties, microhardness and corrosion resistance of Zn-Ni alloy coationg. Zn-Ni, Zn-Ni-Al2O3 and Zn-Ni-TiO2 composite coatings were electrodeposited on steel substrate by direct current in sulphate bath.The structure of the coatings was studied by X-ray diffration and by scaning electron miroscopy. The results showed the appearance of Ni5Zn21 phases and that the incrorporation of Al2O3 and TiO2 in the Zn-Ni coating refined the crystal grain size.The corrosion performance of coating in the 0.6M NaCl as a corrisive solution was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy EIS methods. It was found that the incorporation of nanoparticules in Zn-Ni alloy coating have better corrosion resistance and the values of Rct and Zw increase, while the values of Cdl decrease with increasing of nanoparticules.


2013 ◽  
Vol 690-693 ◽  
pp. 82-88
Author(s):  
Xiao Dong Niu ◽  
Wei Sun ◽  
Xin Qiu ◽  
Jian Meng ◽  
Jian An

The microstructures and electrochemical corrosion behaviors of die-cast Mg-4Al-0.4Mn-xPr (x=0, 1, 4 wt.%) alloys have been investigated. Electrochemical behaviors of all alloys are described by open circuit potential test, potentiodynamic polarization test and electrochemical impedance spectroscope in 3.5 wt.% NaCl solution. The results show that the α-Mg grain is refined and the continuous net β phase appears gradually with increasing the content of Pr in the Mg-4Al-0.4Mn alloys. Moreover, the β phase plays a role of galvanic cathode in AM40 alloy and corrosion barrier in Pr-containing alloys, respectively. Electrochemical measurements show that Pr can improve corrosion resistance of Mg-4Al-0.4Mn alloy in the 3.5 wt.% NaCl solution, and corrosion rate decreases with increasing Pr content.


2015 ◽  
Vol 2015 ◽  
pp. 1-18 ◽  
Author(s):  
J. Porcayo-Calderon ◽  
R. A. Rodriguez-Diaz ◽  
E. Porcayo-Palafox ◽  
J. Colin ◽  
A. Molina-Ocampo ◽  
...  

The effect of Cu addition on the electrochemical corrosion behavior of Ni3Al intermetallic alloy was investigated by potentiodynamic polarization, open-circuit potential, linear polarization resistance, and electrochemical impedance spectroscopy in 1.0 M H2SO4solution. Performance of the pure elements (Cu, Ni, and Al) was also evaluated. In general, Cu addition improved the corrosion resistance of Ni3Al. Electrochemical measurements show that corrosion resistance of Ni3Al-1Cu alloy is lower than that of other intermetallic alloys and pure elements (Ni, Cu, and Al) in 1.0 M H2SO4solution at 25°C. Surface analysis showed that the Ni3Al alloys are attacked mainly through the dendritic phases, and Cu addition suppresses the density of dendritic phases.


2014 ◽  
Vol 912-914 ◽  
pp. 338-341 ◽  
Author(s):  
Rui Yan ◽  
Ting Liang ◽  
Hong Chun Ren ◽  
Jin Gu ◽  
Zhuang Zhou Ji

Electrochemical corrosion behavior of epoxy aluminum coating immersed in 3.5%NaCl solution was investigated using electrochemical impedance spectroscopy (EIS). SEM was also used to analyze the surface images of coating, and the failure mechanism was discussed as well. The experimental results showed that corrosive species can penetrate into coatings and reach the coating/substrate interface promptly, causing the decrease of electro-resistance and the beginning of electrochemical corrosion at the coatings/metal interface. The coating was compact and continuous at beginning, while the blisters and cavities appeared after corrosion, which were formed osmotic pressure created by corrosion species penetration.


Sign in / Sign up

Export Citation Format

Share Document