Geniposide accelerates proteasome degradation of Txnip to inhibit insulin secretion in pancreatic β-cells

2016 ◽  
Vol 40 (5) ◽  
pp. 505-512 ◽  
Author(s):  
C. Y. Liu ◽  
Y. N. Hao ◽  
F. Yin ◽  
Y. L. Zhang ◽  
J. H. Liu
2012 ◽  
Vol 288 (8) ◽  
pp. 5682-5693 ◽  
Author(s):  
Roi Isaac ◽  
Sigalit Boura-Halfon ◽  
Diana Gurevitch ◽  
Alla Shainskaya ◽  
Yechiel Levkovitz ◽  
...  

2013 ◽  
Vol 51 (1) ◽  
pp. 69-77 ◽  
Author(s):  
Yu-Feng Zhao ◽  
Li Wang ◽  
Dingjun Zha ◽  
Li Qiao ◽  
Lianjun Lu ◽  
...  

GW9508 is an agonist of G protein-coupled receptor 40 (GPR40) that is expressed in pancreatic β-cells and is reported to regulate insulin secretion. However, the effects of GW9508 on pancreatic β-cells in primary culture have not been well investigated. This study measured the acute effects of GW9508 on insulin secretion from rat pancreatic islets in primary culture, and the insulin secretion-related events such as the changes in membrane potential, ATP-sensitive potassium currents (KATP currents), and intracellular Ca2+ concentrations ([Ca2+]i) of rat islet β-cells were also recorded. GW9508 (10–40 μM) did not influence basal insulin levels at 2 mM glucose, but it (above 20 μM) significantly inhibited 5 and 15 mM glucose-stimulated insulin secretion (GSIS). GW9508 did not inhibit insulin secretion stimulated by tolbutamide, the closer of KATP channels. GW9508 activated KATP channels and blocked the membrane depolarization and the increase in [Ca2+]i that were stimulated by glucose. GW9508 itself stimulated a transient increase in [Ca2+]i, which was fully blocked by depletion of intracellular Ca2+ stores with thapsigargin or by inhibition of phospholipase C (PLC) activity with U73122. GW9508-induced activation of KATP channels was only partly inhibited by U73122 treatment. In conclusion, although it stimulates a transient release of Ca2+ from intracellular Ca2+ stores via activation of PLC, GW9508 inhibits GSIS by activating KATP channels probably in a distal step to GPR40 activation in rat β-cells.


2018 ◽  
Vol 293 (12) ◽  
pp. 4577-4578 ◽  
Author(s):  
Roi Isaac ◽  
Sigalit Boura-Halfon ◽  
Diana Gurevitch ◽  
Alla Shainskaya ◽  
Yechiel Levkovitz ◽  
...  

2020 ◽  
Vol 33 (5) ◽  
pp. 671-674
Author(s):  
Tashunka Taylor-Miller ◽  
Jayne Houghton ◽  
Paul Munyard ◽  
Yadlapalli Kumar ◽  
Clinda Puvirajasinghe ◽  
...  

AbstractBackgroundCongenital hyperinsulinism (CHI), a condition characterized by dysregulation of insulin secretion from the pancreatic β cells, remains one of the most common causes of hyperinsulinemic, hypoketotic hypoglycemia in the newborn period. Mutations in ABCC8 and KCNJ11 constitute the majority of genetic forms of CHI.Case presentationA term macrosomic male baby, birth weight 4.81 kg, born to non-consanguineous parents, presented on day 1 of life with severe and persistent hypoglycemia. The biochemical investigations confirmed a diagnosis of CHI. Diazoxide was started and progressively increased to 15 mg/kg/day to maintain normoglycemia. Sequence analysis identified compound heterozygous mutations in ABCC8 c.4076C>T and c.4119+1G>A inherited from the unaffected father and mother, respectively. The mutations are reported pathogenic. The patient is currently 7 months old with a sustained response to diazoxide.ConclusionsBiallelic ABCC8 mutations are known to result in severe, diffuse, diazoxide-unresponsive hypoglycemia. We report a rare patient with CHI due to compound heterozygous mutations in ABCC8 responsive to diazoxide.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Nana Kobayashi ◽  
Shogo Okazaki ◽  
Oltea Sampetrean ◽  
Junichiro Irie ◽  
Hiroshi Itoh ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Mengmeng Liu ◽  
Lele Ren ◽  
Xiangqin Zhong ◽  
Yaqin Ding ◽  
Tao Liu ◽  
...  

2016 ◽  
Vol 14 (11) ◽  
pp. 823-834 ◽  
Author(s):  
Xiao-Meng WAN ◽  
Mu ZHANG ◽  
Pei ZHANG ◽  
Zhi-Shen XIE ◽  
Feng-Guo XU ◽  
...  

2012 ◽  
Vol 287 (36) ◽  
pp. 30368-30375 ◽  
Author(s):  
Xin-Ya Chen ◽  
Xiu-Ting Gu ◽  
Hexige Saiyin ◽  
Bo Wan ◽  
Yu-Jing Zhang ◽  
...  

2011 ◽  
Vol 120 (9) ◽  
pp. 403-413 ◽  
Author(s):  
Mark A. Russell ◽  
Noel G. Morgan

Common polymorphisms within the FTO (fat mass and obesity-associated) gene correlate with increased BMI (body mass index) and a rising risk of Type 2 diabetes. FTO is highly expressed in the brain but has also been detected in peripheral tissues, including the endocrine pancreas, although its function there is unclear. The aim of the present study was to investigate the role of FTO protein in pancreatic β-cells using a conditional expression system developed in INS-1 cells. INS-1 cells were stably transfected with FTO–HA (haemagluttinin) incorporated under the control of a tetracycline-inducible promoter. Induction of FTO protein resulted in localization of the tagged protein to the nucleus. The level of FTO–HA protein achieved in transfected cells was tightly regulated, and experiments with selective inhibitors revealed that FTO–HA is rapidly degraded via the ubiquitin/proteasome pathway. The nuclear localization was not altered by proteasome inhibitors, although following treatment with PYR-41, an inhibitor of ubiquitination, some of the protein adopted a perinuclear localization. Unexpectedly, modestly increased expression of FTO–HA selectively enhanced the first phase of insulin secretion when INS-1 monolayers or pseudoislets were stimulated with 20 mM glucose, whereas the second phase remained unchanged. The mechanism responsible for the potentiation of glucose-induced insulin secretion is unclear; however, further experiments revealed that it did not involve an increase in insulin biosynthesis or any changes in STAT3 (signal transducer and activator of transcription 3) expression. Taken together, these results suggest that the FTO protein may play a hitherto unrecognized role in the control of first-phase insulin secretion in pancreatic β-cells.


Sign in / Sign up

Export Citation Format

Share Document