Preparation of environmentally friendly low‐cost mullite porous Ceramics and the effect of Waste Glass Powder on structure and mechanical Properties

Author(s):  
Wei Lian ◽  
Yan Liu ◽  
Wenjie Wang ◽  
Yangtao Dong ◽  
Sheng Wang ◽  
...  
2019 ◽  
Vol 22 (3) ◽  
pp. 208-212
Author(s):  
Sheelan M. Hama ◽  
Alhareth M. Abdulghafor ◽  
Mohammed Tarrad Nawar

In this work, waste glass powder from broken windows and plastic fibers from waste polyethylene terephthalate bottles are utilized to produce an economical self-compact concrete. Fresh properties (slump flow diameter, slump Flow T50, V. Funnel, L–Box), mechanical properties (Compressive strength and Flexural strength) and impact resistance of self-compact concrete are investigated. 15% waste glass powder as a partial replacement of cement with five percentages of polyethylene terephthalate plastic waste were adopted: 0% (reference), 0.5%, 0.75%, 1%, 1.25% and 1.5% by volume. It seems that the flow ability of self-compact concrete decreases with the increasing of the amount of plastic fibers. The compressive strength was increased slightly with plastic fiber content up to (0.75%), about 4.6% For more than (0.75%) plastic fiber. The compressive strength began to decrease about 15.2%. The results showed an improvement in flexural strength and an impact on the resistance in all tested specimens’ content of the plastic fibers, especially at (1.5%) fibers.


2015 ◽  
Vol 744-746 ◽  
pp. 1551-1555 ◽  
Author(s):  
Guo Jun Ke ◽  
Dai Nian Zeng ◽  
Pin Yu Zou

Different particle size range of waste glass powder amount to replace part of the cement made to mortar specimens, which were soaked in 5% sodium sulfate solution and water after standard curing .Then determining its mechanics properties in various ages, observing and analysis of the micro structure of the section of the specimens by SEM, exploring the ability of mortar specimens made in different size and dosage of waste glass resist to sulfate. The results indicate: Along with the rising of the size and content of glass powder. The performance of mortar specimens resisting to sulfate were on the decline. When replacement amount was 10%, all kinds of particle size of waste glass mortar specimens are better than that of ordinary Portland cement on mechanical properties, When the glass powder size is less than 53μm, all kinds of mortar specimens with high content of waste glass are better than that of ordinary Portland cement on mechanical properties.


2018 ◽  
Vol 44 (18) ◽  
pp. 22692-22697 ◽  
Author(s):  
Zohreh Asadi ◽  
Reza Norouzbeigi

2012 ◽  
Vol 24 (2) ◽  
pp. 169-180 ◽  
Author(s):  
Sonjida Mustafi ◽  
Mainul Ahsan ◽  
A Hamid Dewan ◽  
Samina Ahmed ◽  
Nazia Khatun ◽  
...  

Key words: Ceramic tile; water absorption; bulk density; firing shrinkage; modulus of ruptureDOI: http://dx.doi.org/10.3329/bjsr.v24i2.10775 Bangladesh J. Sci. Res. 24(2):169-180, 2011 (December) 


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Jianqing Gong ◽  
Zhigang Qu

Alkali-activated mortar (AAM) is one of the products of waste glass recycling that exhibits promising potential for wide engineering applications such as the construction industry. In this study, recycled waste glass powder-based additives, namely, Silica Fume (SF) and Nano-SiO2 (NS), were investigated for their potential to enhance the mechanical properties (strength) and drying-shrinkage resistance of AAM. The results indicated that 5.0% and 1.5% were the optimum SF and NS dosages, respectively, for optimizing AAM performance in terms of the compressive strength, flexural strength, and drying-shrinkage resistance. A prediction model, based on backpropagation (BP) neural network analysis, was also satisfactorily formulated and preliminarily validated for predicting the drying shrinkage of AAM containing SF or NS.


Sign in / Sign up

Export Citation Format

Share Document