scholarly journals Removal of organic pollutants from municipal wastewater by a horizontal pilot - scale constructed wetland utilizing Phragmites australis and Typha latifolia - Effectiveness monitoring per season

Author(s):  
Merima Toromanovic ◽  
Jasmina Ibrahimpašić ◽  
Ljiljana Topalić-Trivunović ◽  
Ifet Šišić

Constructed wetlands, as an alternative to conventional methods, are systemsdesigned on the basis of the application of natural purification processes that take placein watery and swampy overgrown habitats, with certain microbiological groups. In thewastewater treatment process various types of constructed wetlands can be combinedto achieve a higher efficiency of the purification.In this study, the removal effectiveness of the organic substances from municipalwastewater was monitored, using a horizontal pilot - scale constructed wetlandutilizing Typha latifolia and Phragmites australis. In addition to the measurement oforganic substances content through COD, BOD and KMnO4 consumption, and totaldissolved substances (TDS) in influent and effluent, microbiological sample analysis wasperformed, monitored by total number of coliform bacteria.The aim of this study was to calculate the effectiveness of removing organicsubstances from municipal wastewater, depending on the season, as well as theeffectiveness of eliminating total coliform bacteria.The results of one-year research have shown that the removal effectiveness ofthe organic substances from municipal wastewater, expressed as the chemical oxygendemand (COD), was the highest in summer - 87.82% ± 2.83%, and the lowest in thewinter - 64.51% ± 5.89%. During the study, effectiveness of elimination of total coliformbacteria was 97.88 ± 0.80% and total dissolved substances 71.27% .

2013 ◽  
Vol 69 (1) ◽  
pp. 38-47 ◽  
Author(s):  
Sohair I. Abou-Elela ◽  
G. Golinelli ◽  
Abdou Saad El-Tabl ◽  
Mohammed S. Hellal

The aim of this study was to evaluate the performance of two pilot horizontal flow constructed wetlands (HFCWs) with and without vegetation. Three types of plants namely Canna, Phragmites australis and Cyprus papyrus were used. The surface area of each plant was 654 m2. The flow rate was 20 m3 d−1 and the organic loading rate range was 1.7–3.4 kg BOD d−1 with a detention time of 11 days. The results obtained showed that planted HFCW produced high quality effluent in terms of reduction of chemical oxygen demand (COD; 88%), biochemical oxygen demand (BOD; 91%) and total suspended solids (TSS; 92%) as well as nutrient removal. In addition, 4 logs of total coliform were removed from the planted unit compared with only 3 logs in the unplanted one. The phosphate uptake by the plants reached 29, 30.91 and 38.9 g P m−2 for Canna, Phragmites and Cyprus, respectively, with 60% removal rate in the treated effluent. The nitrogen uptake by the same plants reached 63.1, 49.46 and 82.33 g N m−2. Although, the unplanted unit proved to be efficient in the removal of COD, BOD and TSS, it lacks efficiency in pathogen and nutrient removal. The reclaimed wastewater, after disinfection, could be reused for non-restricted irrigation purposes.


2010 ◽  
Vol 2010 ◽  
pp. 1-6 ◽  
Author(s):  
Florent Chazarenc ◽  
Simon Naylor ◽  
Yves Comeau ◽  
Gérard Merlin ◽  
Jacques Brisson

Evapotranspiration (ET) in constructed wetlands (CWs) represents a major factor affecting hydrodynamics and treatment performances. The presence of high ET was shown to improve global treatment performances, however ET is affected by a wide range of parameters including plant development and CWs age. Our study aimed at modelling the effect of plants and peat on ET in CWs; since we hypothesized peat could behave like the presence of accumulated organic matter in old CWs. Treatment performances, hydraulic behaviour, and ET rates were measured in eight 1 m2CWs mesocosm (1 unplanted, 1 unplanted with peat, 2 planted withPhragmites australis, 2 planted withTypha latifoliaand 2 planted withPhragmites australiswith peat). Two models were built using first order kinetics to simulate COD and TKN removal with ET as an input. The effect of peat was positive on ET and was related to the better growth conditions it offered to macrophytes. Removal efficiency in pilot units with larger ET was higher for TKN. On average, results show for COD ak20value of 0.88d-1and 0.36d-1for TKN. We hypothesized that the main effect of ET was to concentrate effluent, thus enhancing degradation rates.


2017 ◽  
Vol 34 (1) ◽  
pp. 233-240 ◽  
Author(s):  
Katarzyna Skrzypiecbcef ◽  
Magdalena H. Gajewskaad

Abstract Constructed wetlands are characterized by specific conditions enabling simultaneous various physical and biochemical processes. This is the result of specific environment for the growth of microorganisms and hydrophytes (aquatic and semiaquatic plants) which are capable of living in aerobic, anaerobic and facultative anaerobic conditions. Their interaction contributes to the intensification of oxidation and reduction responsible for the removal and retention of pollutants. These processes are supported by sorption, sedimentation and assimilation. Thanks to these advantages, treatment wetland systems have been used in communal management for over 50 years. In recent years, thanks to its advantages, low operational costs and high removal efficiency, there is growing interest in the use of constructed wetlands for the treatment or pre-treatment of various types of industrial wastewater. The study analyzes current use of these facilities for the treatment of industrial wastewater in the world. The conditions of use and efficiency of pollutants removal from readily and slowly biodegradable wastewater, with special emphasis on specific and characteristic pollutants of particular industries were presented. The use of subsurface horizontal flow beds for the treatment of industrial wastewater, among others from crude oil processing, paper production, food industry including wineries and distillery, olive oil production and coffee processing was described. In Poland constructed wetlands are used for the treatment of sewage and sludge from milk processing in pilot scale or for dewatering of sewage sludge produced in municipal wastewater treatment plant treating domestic sewage with approximately 40% share of wastewater from dairy and fish industry. In all cases, constructed wetlands provided an appropriate level of treatment and in addition the so-called ecosystem service.


Author(s):  
Nguyen Cong Manh ◽  
Phan Van Minh ◽  
Nguyen Tri Quang Hung ◽  
Phan Thai Son ◽  
Nguyen Minh Ky

Abstract: The study aims to assess the applying effectiveness of constructed wetland technology for polluted surface water treatment. The experimental models were operated with 2 hydraulic loadings of 500mL/min/m2 (T1) and 1500mL/min/m2 (T2). The reed grass (Phragmites australis) was selected for the studying process. The surface water resource was removed from the pollutant components (TSS, BOD5, COD) and harmful microorganisms (fecal coliform) which aim to protect the water quality and aquatic ecosystems. The results showed the treatment effectiveness of loading of 500mL/min/m2 is higher than the loading of 1500mL/min/m2, especially in the reed planting trial. In particular, the treatment efficiency of pollutants such as TSS, BOD5, COD reached a high rate of 85%, 90%, and 87%, respectively. In addition, ANOVA statistical analysis showed the effectiveness of water quality parameters belong to two loadings were statistically significant (P<0.05). Thus, the surface water pollutant removal by subsurface vertical flow constructed wetland technology could be contributed to promoting the sustainable agricultural development. Keywords: Constructed wetland, removal, surface water, Phragmites australis, pollution. References: [1] Z. ElZein, A. Abdou, I.A. ElGawad, Constructed Wetlands as a Sustainable Wastewater Treatment Method in Communities, Procedia Environmental Sciences, 34 (2016) 605-617. https://doi.org/10. 1016/j.proenv.2016.04.053. [2] R.H. Kadlec, S.D. Wallace, Treatment Wetlands, CRC Press/Lewis Pucblishers, Boca Raton, FL, 2009.[3] J. Vymazal, Constructed Wetlands for Wastewater Treatment, Water, 2(3) (2010) 530-549. https://doi. org/10.3390/w2030530. [4] L. Volker, E. Elke, L.W. Martina, L. Andreas, M.G. Richard, Nutrient Removal Efficiency and Resource Economics of Vertical Flow and Horizontal Flow Constructed Wetlands, Ecological Engineering, 18(2) (2001) 157-171. https://doi.org/ 10.1016/S0925-8574(01)00075-1. [5] M. Ilda, F. Daniel, P. Enrico, F. Laura, M. Erika, Z. Gabriele, A cost-effectiveness analysis of seminatural wetlands and activated sludge wastewater-treatment systems, Environmental Management, 41(1) (2007) 118-129. https://doi.org /10.1007/s00267-007-9001-6. [6] J. Vymazal, The use of constructed wetlands with horizontal sub-surface flow for various types of wastewater, Ecological Engineering, 35 (2009) 1-17. https://doi.org/10.1016/j.ecoleng.2008.08.016. [7] S. Katarzyna, H.G. Magdalena, The use of constructed wetlands for the treatment of industrial wastewater, Journal of Water and Land Development, 34 (2017) 233–240. https://doi.org /10.1515/jwld-2017-0058. [8] S. Dallas, B. Scheffe, G. Ho, Reedbeds for greywater treatment-case study in Santa Elena-Monteverde, Costa Rica, Central America. Ecol. Eng. 23 (2004) 55-61. https://doi.org/10.1016/ j.ecoleng.2004.07.002. [9] Tổng cục Thống kê, Niên giám thống kê Việt Nam, NXB Thống kê, Hà Nội, 2018.[10] Bộ Tài nguyên và Môi trường, Báo cáo hiện trạng môi trường quốc gia – Môi trường nước mặt, Hà Nội, 2012.[11] UBND tỉnh Bình Dương, Quyết định số 3613/QĐ-UBND về việc Quy hoạch tài nguyên nước tỉnh Bình Dương giai đoạn 2016 - 2025, tầm nhìn đến năm 2035, Bình Dương, 2016.[12] M. Mirco, T. Attilio, Evapotranspiration from pilot-scale constructed wetlands planted with Phragmites australis in a Mediterranean environment, Journal of Environmental Science and Health, 48(5) (2013) 568-580. https://doi.org/ 10.1080/10934529.2013.730457. [13] K.J. Havens, H. Berquist, W.I. Priest, Common reed grass, Phragmites australis, expansion into constructed wetlands: Are we mortgaging our wetland future? Estuaries, 26 (2003) 417-422. https://doi.org/10.1007/BF02823718. [14] S. Aboubacar, R. Mohamed, A. Jamal, A. Omar, E. Samira, Exploitation of Phragmites australis (Reeds) in Filter Basins for the Treatment of Wastewater, Journal of Environmental Science and Technology, 11 (2018) 56-67. https://doi.org/10. 3923/jest.2018.56.67. [15] S.I. Abou-Elela, M.S. Hellal, Municipal wastewater treatment using vertical flow constructed wetlands planted with Canna, Phragmites and Cyprus, Ecol. Eng. 47 (2012) 209-213. https://doi.org/10.1016/j. ecoleng.2012.06.044.[16] H. Brix, A.C. Arias, The use of vertical flow constructed welands for on-site treatment of domestic wastewater: New Danish guidelines, Ecological Engineering, 25 (2005) 491-500. https://doi.org/10.1016/j.ecoleng.2005.07.009. [17] J. Puigagut, J. Villasenor, J.J. Salas, E. Becares, J. Garcia, Subsurface-flow constructed wetlands in Spain for the sanitation of small communities: A comparison study, Ecological Engineering, 30 (2007) 312-319. https://doi.org/10.1016/j.ecoleng. 2007.04.005. [18] R. Kadlec, R. Knight, Treatment Wetlands, CRC Press, 1996.[19] L. Yang, H.T. Chang, M.N.L. Huang, Nutrient removal in gravel-and soil-based wetlands microcosms with and without vegetation, Ecological Engineering, 18 (2001) 91-105. https://doi.org/10.1016/S0925-8574(01)00068-4. [20] D. Steer, L. Fraser, J. Boddy, B. Seibert, Efficiency of small constructed wetlands for subsurface treatment of single-family domestic effluent, Ecological Engineering, 18 (2002) 429-440. https://doi.org/10.1016/S0925-8574(01)00104-5. [21] J. Vymazal, The use of subsurface constructed wetlands for wastewater in Czech Republic: 10 years experience, Ecological Engineering, 18 (2002) 633-646. https://doi.org/10.1016/S0925-8574(02)00025-3. [22] C.S. Akratos, V.A. Tsihrintzis, Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands, Ecological Engineering, 29 (2007) 173-191. https://doi.org/ 10.1016/j.ecoleng.2006.06.013.


Author(s):  
Farham Aminsharei ◽  
Seyed Mehdi Borghei ◽  
Reza Arjomandi ◽  
Jafar Nouri ◽  
Alireza Pendashteh

The main objective of this study was to compare the removal efficiency of nutrients using Lactuca sativa, Medicago sativa and Phragmites australis in subsurface flow constructed wetlands with horizontal flow. In order to test water quality, fabricated reactors designed and the plants cultivated in the soil while their root were inside the wastewater. A long time study carried out from spring till end of autumn (9 months) in order to evaluate the difference in removal rate based on the seasonal changes. The highest removal rate was during summer which followed by spring and autumn. Thus, the effect of plants on the removal efficiency of organic matter (COD, BOD), TSS and nutrient (P and TN) appeared to be dependent on the seasonal growth. Phragmites australis the most sensitive species in order the removal of nutrient from wastewater.


Author(s):  
Sofia Dias ◽  
Ana P. Mucha ◽  
Rute Duarte Crespo ◽  
Pedro Rodrigues ◽  
C. Marisa R. Almeida

The aim of this study focused on the evaluation of constructed wetlands (CWs) microcosms, on a laboratory scale, for the removal of metals from a pig industry effluent while maintaining effluent organic matter and nutrients levels for its later used as a fertilizer. CWs with different macrophytes (Phragmites australis and Typha latifolia) and different substrates (light expanded clay aggregate and lava rock) were tested. Results showed high removals of metals during CWs treatment, with removal rates reaching >80% for Cd, Cr, Cu, Fe, Mn, and Zn after 2 days of treatment in CWs planted with T. latifolia and >60% in CWs planted with P. australis. Significant differences were only found between substrates for Fe and Mn in CWs with P. australis. Removal of organic matter (through chemical oxygen demand (COD)) was >77%, with no significant differences between substrates or plants. Removals of ammonium and phosphate ions ranged between 59–84% and 32–92%, respectively, in CWs with P. australis and 62–75% and 7–68% in CWs with T. latifolia, with no significant differences between substrates. Overall, CWs showed potential to be efficient in removing toxic contaminants, as metals, while maintaining moderated levels of nutrients, allowing the use of reclaimed water in agriculture, namely as fertilizer. If one aims for a short CW treatment, CW planted with T. latifolia and expanded clay as substrate could be the more suitable choice.


Sign in / Sign up

Export Citation Format

Share Document