scholarly journals Comparative performance analysis of quantum machine learning with deep learning for diabetes prediction

Author(s):  
Himanshu Gupta ◽  
Hirdesh Varshney ◽  
Tarun Kumar Sharma ◽  
Nikhil Pachauri ◽  
Om Prakash Verma

Abstract Background Diabetes, the fastest growing health emergency, has created several life-threatening challenges to public health globally. It is a metabolic disorder and triggers many other chronic diseases such as heart attack, diabetic nephropathy, brain strokes, etc. The prime objective of this work is to develop a prognosis tool based on the PIMA Indian Diabetes dataset that will help medical practitioners in reducing the lethality associated with diabetes. Methods Based on the features present in the dataset, two prediction models have been proposed by employing deep learning (DL) and quantum machine learning (QML) techniques. The accuracy has been used to evaluate the prediction capability of these developed models. The outlier rejection, filling missing values, and normalization have been used to uplift the discriminatory performance of these models. Also, the performance of these models has been compared against state-of-the-art models. Results The performance measures such as precision, accuracy, recall, F1 score, specificity, balanced accuracy, false detection rate, missed detection rate, and diagnostic odds ratio have been achieved as 0.90, 0.95, 0.95, 0.93, 0.95, 0.95, 0.03, 0.02, and 399.00 for DL model respectively, However for QML, these measures have been computed as 0.74, 0.86, 0.85, 0.79, 0.86, 0.86, 0.11, 0.05, and 35.89 respectively. Conclusion The proposed DL model has a high diabetes prediction accuracy as compared with the developed QML and existing state-of-the-art models. It also uplifts the performance by 1.06% compared to reported work. However, the performance of the QML model has been found as satisfactory and comparable with existing literature.

2020 ◽  
Author(s):  
Saeed Nosratabadi ◽  
Amir Mosavi ◽  
Puhong Duan ◽  
Pedram Ghamisi ◽  
Ferdinand Filip ◽  
...  

This paper provides a state-of-the-art investigation of advances in data science in emerging economic applications. The analysis was performed on novel data science methods in four individual classes of deep learning models, hybrid deep learning models, hybrid machine learning, and ensemble models. Application domains include a wide and diverse range of economics research from the stock market, marketing, and e-commerce to corporate banking and cryptocurrency. Prisma method, a systematic literature review methodology, was used to ensure the quality of the survey. The findings reveal that the trends follow the advancement of hybrid models, which, based on the accuracy metric, outperform other learning algorithms. It is further expected that the trends will converge toward the advancements of sophisticated hybrid deep learning models.


2020 ◽  
Author(s):  
Pathikkumar Patel ◽  
Bhargav Lad ◽  
Jinan Fiaidhi

During the last few years, RNN models have been extensively used and they have proven to be better for sequence and text data. RNNs have achieved state-of-the-art performance levels in several applications such as text classification, sequence to sequence modelling and time series forecasting. In this article we will review different Machine Learning and Deep Learning based approaches for text data and look at the results obtained from these methods. This work also explores the use of transfer learning in NLP and how it affects the performance of models on a specific application of sentiment analysis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kinshuk Sengupta ◽  
Praveen Ranjan Srivastava

Abstract Background In medical diagnosis and clinical practice, diagnosing a disease early is crucial for accurate treatment, lessening the stress on the healthcare system. In medical imaging research, image processing techniques tend to be vital in analyzing and resolving diseases with a high degree of accuracy. This paper establishes a new image classification and segmentation method through simulation techniques, conducted over images of COVID-19 patients in India, introducing the use of Quantum Machine Learning (QML) in medical practice. Methods This study establishes a prototype model for classifying COVID-19, comparing it with non-COVID pneumonia signals in Computed tomography (CT) images. The simulation work evaluates the usage of quantum machine learning algorithms, while assessing the efficacy for deep learning models for image classification problems, and thereby establishes performance quality that is required for improved prediction rate when dealing with complex clinical image data exhibiting high biases. Results The study considers a novel algorithmic implementation leveraging quantum neural network (QNN). The proposed model outperformed the conventional deep learning models for specific classification task. The performance was evident because of the efficiency of quantum simulation and faster convergence property solving for an optimization problem for network training particularly for large-scale biased image classification task. The model run-time observed on quantum optimized hardware was 52 min, while on K80 GPU hardware it was 1 h 30 min for similar sample size. The simulation shows that QNN outperforms DNN, CNN, 2D CNN by more than 2.92% in gain in accuracy measure with an average recall of around 97.7%. Conclusion The results suggest that quantum neural networks outperform in COVID-19 traits’ classification task, comparing to deep learning w.r.t model efficacy and training time. However, a further study needs to be conducted to evaluate implementation scenarios by integrating the model within medical devices.


2021 ◽  
Vol 54 (6) ◽  
pp. 1-35
Author(s):  
Ninareh Mehrabi ◽  
Fred Morstatter ◽  
Nripsuta Saxena ◽  
Kristina Lerman ◽  
Aram Galstyan

With the widespread use of artificial intelligence (AI) systems and applications in our everyday lives, accounting for fairness has gained significant importance in designing and engineering of such systems. AI systems can be used in many sensitive environments to make important and life-changing decisions; thus, it is crucial to ensure that these decisions do not reflect discriminatory behavior toward certain groups or populations. More recently some work has been developed in traditional machine learning and deep learning that address such challenges in different subdomains. With the commercialization of these systems, researchers are becoming more aware of the biases that these applications can contain and are attempting to address them. In this survey, we investigated different real-world applications that have shown biases in various ways, and we listed different sources of biases that can affect AI applications. We then created a taxonomy for fairness definitions that machine learning researchers have defined to avoid the existing bias in AI systems. In addition to that, we examined different domains and subdomains in AI showing what researchers have observed with regard to unfair outcomes in the state-of-the-art methods and ways they have tried to address them. There are still many future directions and solutions that can be taken to mitigate the problem of bias in AI systems. We are hoping that this survey will motivate researchers to tackle these issues in the near future by observing existing work in their respective fields.


Algorithms ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 39
Author(s):  
Carlos Lassance ◽  
Vincent Gripon ◽  
Antonio Ortega

Deep Learning (DL) has attracted a lot of attention for its ability to reach state-of-the-art performance in many machine learning tasks. The core principle of DL methods consists of training composite architectures in an end-to-end fashion, where inputs are associated with outputs trained to optimize an objective function. Because of their compositional nature, DL architectures naturally exhibit several intermediate representations of the inputs, which belong to so-called latent spaces. When treated individually, these intermediate representations are most of the time unconstrained during the learning process, as it is unclear which properties should be favored. However, when processing a batch of inputs concurrently, the corresponding set of intermediate representations exhibit relations (what we call a geometry) on which desired properties can be sought. In this work, we show that it is possible to introduce constraints on these latent geometries to address various problems. In more detail, we propose to represent geometries by constructing similarity graphs from the intermediate representations obtained when processing a batch of inputs. By constraining these Latent Geometry Graphs (LGGs), we address the three following problems: (i) reproducing the behavior of a teacher architecture is achieved by mimicking its geometry, (ii) designing efficient embeddings for classification is achieved by targeting specific geometries, and (iii) robustness to deviations on inputs is achieved via enforcing smooth variation of geometry between consecutive latent spaces. Using standard vision benchmarks, we demonstrate the ability of the proposed geometry-based methods in solving the considered problems.


2021 ◽  
Author(s):  
R. Priyadarshini ◽  
K. Anuratha ◽  
N. Rajendran ◽  
S. Sujeetha

Anamoly is an uncommon and it represents an outlier i.e, a nonconforming case. According to Oxford Dictionary of Mathematics anamoly is defined as an unusal and erroneous observation that usually doesn’t follow the general pattern of drawn population. The process of detecting the anmolies is a process of data mining and it aims at finding the data points or patterns that do not adapt with the actual complete pattern of the data.The study on anamoly behavior and its impact has been done on areas such as Network Security, Finance, Healthcare and Earth Sciences etc. The proper detection and prediction of anamolies are of great importance as these rare observations may carry siginificant information. In today’s finanicial world, the enterprise data is digitized and stored in the cloudand so there is a significant need to detect the anaomalies in financial data which will help the enterprises to deal with the huge amount of auditing The corporate and enterprise is conducting auidts on large number of ledgers and journal entries. The monitoring of those kinds of auidts is performed manually most of the times. There should be proper anamoly detection in the high dimensional data published in the ledger format for auditing purpose. This work aims at analyzing and predicting unusal fraudulent financial transations by emplyoing few Machine Learning and Deep Learning Methods. Even if any of the anamoly like manipulation or tampering of data detected, such anamolies and errors can be identified and marked with proper proof with the help of the machine learning based algorithms. The accuracy of the prediction is increased by 7% by implementing the proposed prediction models.


2020 ◽  
Author(s):  
Saeed Nosratabadi ◽  
Amir Mosavi ◽  
Ramin Keivani ◽  
Sina Faizollahzadeh Ardabili ◽  
Farshid Aram

Deep learning (DL) and machine learning (ML) methods have recently contributed to the advancement of models in the various aspects of prediction, planning, and uncertainty analysis of smart cities and urban development. This paper presents the state of the art of DL and ML methods used in this realm. Through a novel taxonomy, the advances in model development and new application domains in urban sustainability and smart cities are presented. Findings reveal that five DL and ML methods have been most applied to address the different aspects of smart cities. These are artificial neural networks; support vector machines; decision trees; ensembles, Bayesians, hybrids, and neuro-fuzzy; and deep learning. It is also disclosed that energy, health, and urban transport are the main domains of smart cities that DL and ML methods contributed in to address their problems.


2021 ◽  
Author(s):  
Aditya Nagori ◽  
Anushtha Kalia ◽  
Arjun Sharma ◽  
Pradeep Singh ◽  
Harsh Bandhey ◽  
...  

Shock is a major killer in the ICU and machine learning based early predictions can potentially save lives. Generalization across age and geographical context is an unaddressed challenge. In this retrospective observational study, we built real-time shock prediction models generalized across age groups and continents. More than 1.5 million patient-hours of novel data from a pediatric ICU in New Delhi and 5 million patient-hours from the adult ICU MIMIC database were used to build models. We achieved model generalization through a novel fractal deep-learning approach and predicted shock up to 12 hours in advance. Our deep learning models showed a receiver operating curve (AUROC) drop from 78% (95%CI, 73-83) on MIMIC data to 66% (95%CI, 54-78) on New Delhi data, outperforming standard machine learning by nearly a 10% gap. Therefore, better representations and deep learning can partly address the generalizability-gap of ICU prediction models trained across geographies. Our data and algorithms are publicly available as a pre-configured docker environment at https://github.com/SAFE-ICU/ShoQPred.


Author(s):  
Amir Mosavi ◽  
Sina Faizollahzadeh Ardabili ◽  
Shahabodin Shamshirband

Electricity demand prediction is vital for energy production management and proper exploitation of the present resources. Recently, several novel machine learning (ML) models have been employed for electricity demand prediction to estimate the future prospects of the energy requirements. The main objective of this study is to review the various ML models applied for electricity demand prediction. Through a novel search and taxonomy, the most relevant original research articles in the field are identified and further classified according to the ML modeling technique, perdition type, and the application area. A comprehensive review of the literature identifies the major ML models, their applications and a discussion on the evaluation of their performance. This paper further makes a discussion on the trend and the performance of the ML models. As the result, this research reports an outstanding rise in the accuracy, robustness, precision and the generalization ability of the prediction models using the hybrid and ensemble ML algorithms.


2021 ◽  
Author(s):  
Md Abu Rumman Refat ◽  
Md. Al Amin ◽  
Chetna Kaushal ◽  
Mst Nilufa Yeasmin ◽  
Md Khairul Islam

Sign in / Sign up

Export Citation Format

Share Document