scholarly journals The green fuel from carbon waste: optimization and product selectivity model studies

2018 ◽  
Vol 5 (3) ◽  
pp. 399-410 ◽  
Author(s):  
Hossein Atashi ◽  
Fatemeh Rezaeian ◽  
Ali Akbar Mirzaei
1995 ◽  
Vol 74 (03) ◽  
pp. 868-873 ◽  
Author(s):  
Silvana Arrighi ◽  
Roberta Rossi ◽  
Maria Giuseppina Borri ◽  
Vladimir Lesnikov ◽  
Marina Lesnikov ◽  
...  

SummaryTo improve the safety of plasma derived factor VIII (FVIII) concentrate, we introduced a final super heat treatment (100° C for 30 min) as additional virus inactivation step applied to a lyophilized, highly purified FVIII concentrate (100 IU/mg of proteins) already virus inactivated using the solvent/detergent (SID) method during the manufacturing process.The efficiency of the super heat treatment was demonstrated in inactivating two non-lipid enveloped viruses (Hepatitis A virus and Poliovirus 1). The loss of FVIII procoagulant activity during the super heat treatment was of about 15%, estimated both by clotting and chromogenic assays. No substantial changes were observed in physical, biochemical and immunological characteristics of the heat treated FVIII concentrate in comparison with those of the FVIII before heat treatment.


Author(s):  
Molla Asmare ◽  
Mustafa Ilbas

Nowadays, the most decisive challenges we are fronting are perfectly clean energy making for equitable and sustainable modern energy access, and battling the emerging alteration of the climate. This is because, carbon-rich fuels are the fundamental supply of utilized energy for strengthening human society, and it will be sustained in the near future. In connection with this, electrochemical technologies are an emerging and domineering tool for efficiently transforming the existing scarce fossil fuels and renewable energy sources into electric power with a trivial environmental impact. Compared with conventional power generation technologies, SOFC that operate at high temperature is emerging as a frontrunner to convert the fuels chemical energy into electric power and permits the deployment of varieties of fuels with negligible ecological destructions. According to this critical review, direct ammonia is obtained as a primary possible choice and price-effective green fuel for T-SOFCs. This is because T-SOFCs have higher volumetric power density, mechanically stable, and high thermal shocking resistance. Also, there is no sealing issue problem which is the chronic issues of the planar one. As a result, the toxicity of ammonia to use as a fuel is minimized if there may be a leakage during operation. It is portable and manageable that can be work everywhere when there is energy demand. Besides, manufacturing, onboard hydrogen deposition, and transportation infrastructure connected snags of hydrogen will be solved using ammonia. Ammonia is a low-priced carbon-neutral source of energy and has more stored volumetric energy compared with hydrogen. Yet, to utilize direct NH3 as a means of hydrogen carrier and an alternative green fuel in T-SOFCs practically determining the optimum operating temperatures, reactant flow rates, electrode porosities, pressure, the position of the anode, thickness and diameters of the tube are still requiring further improvement. Therefore, mathematical modeling ought to be developed to determine these parameters before planning for experimental work. Also, a performance comparison of AS, ES, and CS- T-SOFC powered with direct NH3 will be investigated and best-performed support will be carefully chosen for practical implementation and an experimental study will be conducted for verification based on optimum parameter values obtained from numerical modeling.


2014 ◽  
Vol 59 (4) ◽  
pp. 971-986 ◽  
Author(s):  
Krzysztof Tajduś

Abstract The paper presents the analysis of the phenomenon of horizontal displacement of surface induced by underground mining exploitation. In the initial part, the basic theories describing horizontal displacement are discussed, followed by three illustrative examples of underground exploitation in varied mining conditions. It is argued that center of gravity (COG) method presented in the paper, hypothesis of Awierszyn and model studies carried out in Strata Mechanics Research Institute of the Polish Academy of Sciences indicate the proportionality between vectors of horizontal displacement and the vector of surface slope. The differences practically relate to the value of proportionality coefficient B, whose estimated values in currently realized design projects for mining industry range between 0.23r to 0.42r for deep exploitations, whereas in the present article the values of 0.33r and 0.47r were obtained for two instances of shallow exploitation. Furthermore, observations on changes of horizontal displacement vectors with face advancement indicated the possibility of existence of COG zones above the mined-out field, which proved the conclusions of hitherto carried out research studies (Tajduś 2013).


Sign in / Sign up

Export Citation Format

Share Document