scholarly journals Construction of Electrocatalytic and Heat-Resistant Self-Supporting Electrodes for High-Performance Lithium–Sulfur Batteries

2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Xuemei Zhang ◽  
Yunhong Wei ◽  
Boya Wang ◽  
Mei Wang ◽  
Yun Zhang ◽  
...  

Abstract Boosting the utilization efficiency of sulfur electrodes and suppressing the “shuttle effect” of intermediate polysulfides remain the critical challenge for high-performance lithium–sulfur batteries (LSBs). However, most of reported sulfur electrodes are not competent to realize the fast conversion of polysulfides into insoluble lithium sulfides when applied with high sulfur loading, as well as to mitigate the more serious shuttle effect of polysulfides, especially when worked at an elevated temperature. Herein, we reported a unique structural engineering strategy of crafting a unique hierarchical multifunctional electrode architecture constructed by rooting MOF-derived CoS2/carbon nanoleaf arrays (CoS2–CNA) into a nitrogen-rich 3D conductive scaffold (CTNF@CoS2–CNA) for LSBs. An accelerated electrocatalytic effect and improved polysulfide redox kinetics arising from CoS2–CNA were investigated. Besides, the strong capillarity effect and chemisorption of CTNF@CoS2–CNA to polysulfides enable high loading and efficient utilization of sulfur, thus leading to high-performance LIBs performed not only at room temperature but also up to an elevated temperature (55 °C). Even with the ultrahigh sulfur loading of 7.19 mg cm−2, the CTNF@CoS2–CNA/S cathode still exhibits high rate capacity at 55 °C.

2019 ◽  
Vol 7 (30) ◽  
pp. 18100-18108 ◽  
Author(s):  
Jie Xu ◽  
Shiming Bi ◽  
Weiqiang Tang ◽  
Qi Kang ◽  
Dongfang Niu ◽  
...  

The duplex trapping behavior between a DPP-based POF and polysulfides is propitious for maintaining active substances and restricting the shuttle effect, realizing Li–S batteries with high rate, high sulfur content and high capacity retention.


2021 ◽  
Author(s):  
Yue Qiu ◽  
Xun Sun ◽  
Maoxu Wang ◽  
Xian Wu ◽  
Bo Jiang ◽  
...  

Abstract Atomically dispersed metal catalysts have offered significant potential for accelerating sluggish kinetics of transformation of lithium polysulfide(LiPS) and inhibiting the shuttle effect to achieve the long-life cycling and high rate of lithium sulfur batteries. However, the end-on adsorption structure between single metal site and polysulfide limits the adsorption capacity and catalytic activity of single atom catalysts. Here, we construct dual-atoms iron sites on nitrogen doped graphene to serve as highly efficient catalyst for lithium sulfur batteries. As expected, the dual-atoms sites can firmly bound polysulfides by forming double Fe-S bonds between polysulfides and the two adjacent iron atoms. Such double-bond adsorption structure is also favorable for the electron transfer and polysulfides activation, so as to reduce the energy barrier and accelerate the reaction kinetics. As a result, the as-obtained dual-atoms iron catalyst can effectively alleviate the shuttle effect and improve the utilization of active sulfur, thus the batteries present high initial capacity of 1615 mAh g-1 at 0.05 C and long-cycle life with a decay rate per cycle as low as 0.015% at 2C over 1000 cycles.


Author(s):  
Chenhui WANG ◽  
Nobuyuki Sakai ◽  
Yasuo Ebina ◽  
Takayuki KIKUCHI ◽  
Monika Snowdon ◽  
...  

Lithium-sulfur batteries have high promise for application in next-generation energy storage. However, further advances have been hindered by various intractable challenges, particularly three notorious problems: the “shuttle effect”, sluggish kinetics...


2019 ◽  
Vol 23 ◽  
pp. 62-71 ◽  
Author(s):  
Zhensong Qiao ◽  
Fan Zhou ◽  
Qingfei Zhang ◽  
Fei Pei ◽  
Hongfei Zheng ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
pp. 20-33
Author(s):  
Lian Wu ◽  
Yongqiang Dai ◽  
Wei Zeng ◽  
Jintao Huang ◽  
Bing Liao ◽  
...  

Abstract Fast charge transfer and lithium-ion transport in the electrodes are necessary for high performance Li–S batteries. Herein, a N-doped carbon-coated intercalated-bentonite (Bent@C) with interlamellar ion path and 3D conductive network architecture is designed to improve the performance of Li–S batteries by expediting ion/electron transport in the cathode. The interlamellar ion pathways are constructed through inorganic/organic intercalation of bentonite. The 3D conductive networks consist of N-doped carbon, both in the interlayer and on the surface of the modified bentonite. Benefiting from the unique structure of the Bent@C, the S/Bent@C cathode exhibits a high initial capacity of 1,361 mA h g−1 at 0.2C and achieves a high reversible capacity of 618.1 m Ah g−1 at 2C after 500 cycles with a sulfur loading of 2 mg cm−2. Moreover, with a higher sulfur loading of 3.0 mg cm−2, the cathode still delivers a reversible capacity of 560.2 mA h g−1 at 0.1C after 100 cycles.


2021 ◽  
Author(s):  
Dongke Zhang ◽  
Ting Huang ◽  
Pengfei Zhao ◽  
Ze Zhang ◽  
Xingtao Qi ◽  
...  

Abstract Due to the low conductivity of sulfur and the dissolution of polysulfides, the research and application of lithium-sulfur (Li-S) batteries have encountered certain resistance. Increasing conductivity and introducing polarity into the sulfur host can effectively overcome these long-standing problems. Herein, We first prepared Co3W3C@ C@ CNTs / S material and used it in the cathode of lithium-sulfur batteries, The existence of carboxylated CNTs can form a conductive network, accelerate the transmission of electrons and improve the rate performance, and polar Co3W3C can form a strong interaction with polysulfide intermediates, effectively inhibiting its shuttle effect, improving the utilization of sulfur cathode electrodes, and improving the capacity and cycle stability. The Co3W3C@C@CNTs / S electrode material has a capacity of 1,093 mA h g-1 at a 0.1 A g− 1 and 482 mA h g-1 at 5 A g− 1. Even after 500 cycles of 2 A g− 1, the capacity of each cycle is only reduced by 0.08%. The excellent stability of this material can provide a new idea for the future development of lithium-sulfur batteries.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Mengjiao Shi ◽  
Su Zhang ◽  
Yuting Jiang ◽  
Zimu Jiang ◽  
Longhai Zhang ◽  
...  

AbstractThe development of lithium–sulfur batteries (LSBs) is restricted by their poor cycle stability and rate performance due to the low conductivity of sulfur and severe shuttle effect. Herein, an N, O co-doped graphene layered block (NOGB) with many dents on the graphene sheets is designed as effective sulfur host for high-performance LSBs. The sulfur platelets are physically confined into the dents and closely contacted with the graphene scaffold, ensuring structural stability and high conductivity. The highly doped N and O atoms can prevent the shuttle effect of sulfur species by strong chemical adsorption. Moreover, the micropores on the graphene sheets enable fast Li+ transport through the blocks. As a result, the obtained NOGB/S composite with 76 wt% sulfur content shows a high capacity of 1413 mAh g−1 at 0.1 C, good rate performance of 433 mAh g−1 at 10 C, and remarkable stability with 526 mAh g−1 at after 1000 cycles at 1 C (average decay rate: 0.038% per cycle). Our design provides a comprehensive route for simultaneously improving the conductivity, ion transport kinetics, and preventing the shuttle effect in LSBs.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1989 ◽  
Author(s):  
Wei Dong ◽  
Lingqiang Meng ◽  
Xiaodong Hong ◽  
Sizhe Liu ◽  
Ding Shen ◽  
...  

Lithium-sulfur batteries are very promising next-generation energy storage batteries due to their high theoretical specific capacity. However, the shuttle effect of lithium-sulfur batteries is one of the important bottlenecks that limits its rapid development. Herein, physical and chemical dual adsorption of lithium polysulfides are achieved by designing a novel framework structure consisting of MnO2, reduced graphene oxide (rGO), and carbon nanotubes (CNTs). The framework-structure composite of MnO2/rGO/CNTs is prepared by a simple hydrothermal method. The framework exhibits a uniform and abundant mesoporous structure (concentrating in ~12 nm). MnO2 is an α phase structure and the α-MnO2 also has a significant effect on the adsorption of lithium polysulfides. The rGO and CNTs provide a good physical adsorption interaction and good electronic conductivity for the dissolved polysulfides. As a result, the MnO2/rGO/CNTs/S cathode delivered a high initial capacity of 1201 mAh g−1 at 0.2 C. The average capacities were 916 mAh g−1, 736 mAh g−1, and 547 mAh g−1 at the current densities of 0.5 C, 1 C, and 2 C, respectively. In addition, when tested at 0.5 C, the MnO2/rGO/CNTs/S exhibited a high initial capacity of 1010 mAh g−1 and achieved 780 mAh g−1 after 200 cycles, with a low capacity decay rate of 0.11% per cycle. This framework-structure composite provides a simple way to improve the electrochemical performance of Li-S batteries.


2019 ◽  
Vol 7 (22) ◽  
pp. 13679-13686 ◽  
Author(s):  
Dezhi Yang ◽  
Liang He ◽  
Yu Liu ◽  
Wenqi Yan ◽  
Shishuo Liang ◽  
...  

An acetylene black modified gel polymer electrolyte was prepared to simultaneously solve the problems of shuttle effect and lithium dendrite growth for high-performance Li–S batteries.


Sign in / Sign up

Export Citation Format

Share Document