scholarly journals Oxygen-Deficient β-MnO2@Graphene Oxide Cathode for High-Rate and Long-Life Aqueous Zinc Ion Batteries

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Shouxiang Ding ◽  
Mingzheng Zhang ◽  
Runzhi Qin ◽  
Jianjun Fang ◽  
Hengyu Ren ◽  
...  

AbstractRecent years have witnessed a booming interest in grid-scale electrochemical energy storage, where much attention has been paid to the aqueous zinc ion batteries (AZIBs). Among various cathode materials for AZIBs, manganese oxides have risen to prominence due to their high energy density and low cost. However, sluggish reaction kinetics and poor cycling stability dictate against their practical application. Herein, we demonstrate the combined use of defect engineering and interfacial optimization that can simultaneously promote rate capability and cycling stability of MnO2 cathodes. β-MnO2 with abundant oxygen vacancies (VO) and graphene oxide (GO) wrapping is synthesized, in which VO in the bulk accelerate the charge/discharge kinetics while GO on the surfaces inhibits the Mn dissolution. This electrode shows a sustained reversible capacity of ~ 129.6 mAh g−1 even after 2000 cycles at a current rate of 4C, outperforming the state-of-the-art MnO2-based cathodes. The superior performance can be rationalized by the direct interaction between surface VO and the GO coating layer, as well as the regulation of structural evolution of β-MnO2 during cycling. The combinatorial design scheme in this work offers a practical pathway for obtaining high-rate and long-life cathodes for AZIBs.

Nanoscale ◽  
2019 ◽  
Vol 11 (16) ◽  
pp. 7761-7770 ◽  
Author(s):  
Muhammad Tahir ◽  
Liang He ◽  
Waqas Ali Haider ◽  
Wei Yang ◽  
Xufeng Hong ◽  
...  

Microstructuring of the PEDOT–CNT composite for microsupercapacitors with high rate capability and excellent cycling stability.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Lei Zheng ◽  
Feng Guo ◽  
Tuo Kang ◽  
Yingzhu Fan ◽  
Wei Gu ◽  
...  

AbstractLithium metal is regarded as the ultimate negative electrode material for secondary batteries due to its high energy density. However, it suffers from poor cycling stability because of its high reactivity with liquid electrolytes. Therefore, continuous efforts have been put into improving the cycling Coulombic efficiency (CE) to extend the lifespan of the lithium metal negative electrode. Herein, we report that using dual-salt additives of LiPF6 and LiNO3 in an ether solvent-based electrolyte can significantly improve the cycling stability and rate capability of a Li-carbon (Li-CNT) composite. As a result, an average cycling CE as high as 99.30% was obtained for the Li-CNT at a current density of 2.5 mA cm–2 and an negative electrode to positive electrode capacity (N/P) ratio of 2. The cycling stability and rate capability enhancement of the Li-CNT negative electrode could be attributed to the formation of a better solid electrolyte interphase layer that contains both inorganic components and organic polyether. The former component mainly originates from the decomposition of the LiNO3 additive, while the latter comes from the LiPF6-induced ring-opening polymerization of the ether solvent. This novel surface chemistry significantly improves the CE of Li negative electrode, revealing its importance for the practical application of lithium metal batteries.


2018 ◽  
Vol 5 (1) ◽  
pp. 171186 ◽  
Author(s):  
Guofu Ma ◽  
Fengting Hua ◽  
Kanjun Sun ◽  
Enke Fenga ◽  
Hui Peng ◽  
...  

The electrochemical performance of an energy conversion and storage device like the supercapacitor mainly depends on the microstructure and morphology of the electrodes. In this paper, to improve the capacitance performance of the supercapacitor, the all-pseudocapacitive electrodes of lamella-like Bi 18 SeO 29 /BiSe as the negative electrode and flower-like Co 0.85 Se nanosheets as the positive electrode are synthesized by using a facile low-temperature one-step hydrothermal method. The microstructures and morphology of the electrode materials are carefully characterized, and the capacitance performances are also tested. The Bi 18 SeO 29 /BiSe and Co 0.85 Se have high specific capacitance (471.3 F g –1 and 255 F g –1 at 0.5 A g –1 ), high conductivity, outstanding cycling stability, as well as good rate capability. The assembled asymmetric supercapacitor completely based on the pseudocapacitive electrodes exhibits outstanding cycling stability (about 93% capacitance retention after 5000 cycles). Moreover, the devices exhibit high energy density of 24.2 Wh kg –1 at a power density of 871.2 W kg –1 in the voltage window of 0–1.6 V with 2 M KOH solution.


CrystEngComm ◽  
2019 ◽  
Vol 21 (46) ◽  
pp. 7130-7140 ◽  
Author(s):  
Narasimharao Kitchamsetti ◽  
Parameshwar R. Chikate ◽  
Ranjit A. Patil ◽  
Yuan-Ron Ma ◽  
Parasharam M. Shirage ◽  
...  

The morphology of NiO (1D nanobelts and 2D nanosheets) has a significant effect on the pseudocapacitive performance. The perforated and interlinked mesoporous structure of NiO nanobelts delivered higher power and energy density than nanosheets.


Nanoscale ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 520-531 ◽  
Author(s):  
Dongdong Wang ◽  
Zhongqiang Shan ◽  
Jianhua Tian ◽  
Zheng Chen

Ultrathin mesoporous Li4Ti5O12 nanosheets, which offer high capacity, high rate capability and excellent cycling stability, were synthesized in a controlled fashion.


Nanoscale ◽  
2015 ◽  
Vol 7 (34) ◽  
pp. 14401-14412 ◽  
Author(s):  
Pin Hao ◽  
Zhenhuan Zhao ◽  
Liyi Li ◽  
Chia-Chi Tuan ◽  
Haidong Li ◽  
...  

A porous MnCo2O4.5 nanoneedle/carbon aerogel hybrid nanostructure was synthesized. The synergy of merits of the two kinds of supercapacitors endows the hybrid nanostructure with enhanced specific capacitance, rate capability, energy density and cycling stability.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1602 ◽  
Author(s):  
Jun-Ping Hu ◽  
Hang Sheng ◽  
Qi Deng ◽  
Qiang Ma ◽  
Jun Liu ◽  
...  

LiNixCoyMnzO2 (LNCM)-layered materials are considered the most promising cathode for high-energy lithium ion batteries, but suffer from poor rate capability and short lifecycle. In addition, the LiNi1/3Co1/3Mn1/3O2 (NCM 111) is considered one of the most widely used LNCM cathodes because of its high energy density and good safety. Herein, a kind of NCM 111 with semi-closed structure was designed by controlling the amount of urea, which possesses high rate capability and long lifespan, exhibiting 140.9 mAh·g−1 at 0.85 A·g−1 and 114.3 mAh·g−1 at 1.70 A·g−1, respectively. The semi-closed structure is conducive to the infiltration of electrolytes and fast lithium ion-transfer inside the electrode material, thus improving the rate performance of the battery. Our work may provide an effective strategy for designing layered-cathode materials with high rate capability.


2009 ◽  
Vol 194 (1) ◽  
pp. 526-530 ◽  
Author(s):  
Rajesh K. Katiyar ◽  
Rahul Singhal ◽  
Karina Asmar ◽  
Ricky Valentin ◽  
Ram S. Katiyar

2016 ◽  
Vol 28 (45) ◽  
pp. 9979-9985 ◽  
Author(s):  
Xuefeng Tong ◽  
Fan Zhang ◽  
Bifa Ji ◽  
Maohua Sheng ◽  
Yongbing Tang

Sign in / Sign up

Export Citation Format

Share Document