scholarly journals Fully Printed High-Performance n-Type Metal Oxide Thin-Film Transistors Utilizing Coffee-Ring Effect

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Kun Liang ◽  
Dingwei Li ◽  
Huihui Ren ◽  
Momo Zhao ◽  
Hong Wang ◽  
...  

AbstractMetal oxide thin-films transistors (TFTs) produced from solution-based printing techniques can lead to large-area electronics with low cost. However, the performance of current printed devices is inferior to those from vacuum-based methods due to poor film uniformity induced by the “coffee-ring” effect. Here, we report a novel approach to print high-performance indium tin oxide (ITO)-based TFTs and logic inverters by taking advantage of such notorious effect. ITO has high electrical conductivity and is generally used as an electrode material. However, by reducing the film thickness down to nanometers scale, the carrier concentration of ITO can be effectively reduced to enable new applications as active channels in transistors. The ultrathin (~10-nm-thick) ITO film in the center of the coffee-ring worked as semiconducting channels, while the thick ITO ridges (>18-nm-thick) served as the contact electrodes. The fully inkjet-printed ITO TFTs exhibited a high saturation mobility of 34.9 cm2 V−1 s−1 and a low subthreshold swing of 105 mV dec−1. In addition, the devices exhibited excellent electrical stability under positive bias illumination stress (PBIS, ΔVth = 0.31 V) and negative bias illuminaiton stress (NBIS, ΔVth = −0.29 V) after 10,000 s voltage bias tests. More remarkably, fully printed n-type metal–oxide–semiconductor (NMOS) inverter based on ITO TFTs exhibited an extremely high gain of 181 at a low-supply voltage of 3 V, promising for advanced electronics applications.

2016 ◽  
Vol 8 (14) ◽  
pp. 9088-9096 ◽  
Author(s):  
Huanyu Jin ◽  
Jiasheng Qian ◽  
Limin Zhou ◽  
Jikang Yuan ◽  
Haitao Huang ◽  
...  

Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1835 ◽  
Author(s):  
Taegun Yim ◽  
Choongkeun Lee ◽  
Hongil Yoon

Due to the advance of dynamic random access memory (DRAM) technologies with the steadfast increase of density with aggressively scaled storage capacitors, the supply voltage has been lowered to under 1 V to reduce power consumption. The above progress has been accompanied by the increasingly difficult task of sensing cell data reliably. One of the essential methods to preserve sustainable data retention characteristic is to curtail the sub-threshold leakage current by using a negative voltage bias for the bulk of access transistors. This negative back-bias is generated by a back-bias voltage generator. This paper proposes a novel high-speed back-bias voltage (VBB) generator with a cross-coupled hybrid pumping scheme. The conventional circuit uses one fixed voltage to control the gates of discharge of the p-channel metal oxide semiconductor (PMOS) and transfer n-channel metal oxide semiconductor (NMOS), respectively. However, the proposed circuit adds an auxiliary pump, thereby able to control more aptly with a lower negative voltage when discharging and a higher positive voltage when transferring. As a result, the proposed circuit achieves a faster pump-down speed and higher pumping current at a lower supply voltage compared to conventional circuits. The H-simulation program with integrated circuit emphasis (HSPICE) simulation results with the Taiwan semiconductor manufacturing company (TSMC) 0.18 um process technology indicates that the proposed circuit has about a 20% faster pump-down speed at a supply voltage of voltage common collector (VCC) = 1.2 V and about 3% higher pumping current at VBB from −0.6 V to −1 V with the ability to generate a near 3% higher ratio of |VBB|/VCC at VCC = 0.6 V compared to conventional circuits. Hence, the proposed circuit is extremely suitable and promising for future low-power and high-performance DRAM applications.


Author(s):  
Jingzhi Hu ◽  
Zhaohua Xu ◽  
Kai Yuan ◽  
Chao Shen ◽  
Keyu Xie ◽  
...  

Author(s):  
S.S. Shahruddin ◽  
N. Ideris ◽  
N.F. Abu Bakar ◽  
A.L. Ahmad ◽  
N.F.C. Lah

2020 ◽  
Vol 187 (12) ◽  
Author(s):  
Yuanchao Liu ◽  
Jie Pan ◽  
Zhenlin Hu ◽  
Yanwu Chu ◽  
Muhammad Shehzad Khan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document