Religious orientation and poverty in Ghana: associations and explanations

Author(s):  
Abraham Gyamfi Ababio ◽  
Anthony Osei-Fosu ◽  
Emmanuel Buabeng
2009 ◽  
Author(s):  
Sara J. Johnson ◽  
Brad J. Sagarin

ALQALAM ◽  
2015 ◽  
Vol 32 (1) ◽  
pp. 83
Author(s):  
Maftuh Maftuh

For many observers, Banten is well known as an area where the population has a strict religious understanding onislamic law. Colonial officials and experts in Islamic studies such as Snouck Hurgronje and GF Pijper, testified that compared to other Muslims across Java , Muslim in Banten and Cirebon were stricter in practicing Islam . The phenomenon of the social life of the religious community in Banten is necessarily formed within a very long time span. This paper traces the root of the formation of public religious understanding ojMuslim in Banten. Using a socio-historical approach, this paper then leads to the conclusion that the sultan of Banten issued policies that had a greater emphasis to the adherence to the Shari'a rather than Sufism. Religious orientation on the fiqh-oriented can explain the Islamic militancy Banten community, as witnessed by the colonial officials, and even still can be seen up to this present moment.Key words: Jslamization, Sultanate, Banten


This volume is an interdisciplinary assessment of the relationship between religion and the FBI. We recount the history of the FBI’s engagement with multiple religious communities and with aspects of public or “civic” religion such as morality and respectability. The book presents new research to explain roughly the history of the FBI’s interaction with religion over approximately one century, from the pre-Hoover period to the post-9/11 era. Along the way, the book explores vexed issues that go beyond the particulars of the FBI’s history—the juxtaposition of “religion” and “cult,” the ways in which race can shape the public’s perceptions of religion (and vica versa), the challenges of mediating between a religious orientation and a secular one, and the role and limits of academic scholarship as a way of addressing the differing worldviews of the FBI and some of the religious communities it encounters.


2020 ◽  
Author(s):  
Haya Jarad ◽  
Junhua Yang ◽  
Abeed Sarker

BACKGROUND Opioid misuse is a major health problem in the United States, and can lead to addiction and fatal overdose. The United States is in the midst of an opioid epidemic; in 2018, an average of approximately 130 Americans died daily from an opioid overdose and 2.1 million have an opioid use disorder (OUD). In addition to electronic health records (EHRs), social media have also been harnessed for studying and predicting physical and behavioral outcomes of OUD. Specifically, it has been shown that on Twitter the use of certain language patterns and their frequencies in subjects’ tweets are indicative of significant healthcare outcomes such as opioid misuse/use and suicide ideation. We sought to understand personal traits and behaviors of Twitter chatters relative to the motive of opioid misuse; pain or recreational. OBJECTIVE . METHODS We collected tweets using the Twitter public developer application programming interface (API) between April 13, 2018 – and May 21, 2018. A list of opioid-related keywords were searched for such as methadone, codeine, fentanyl, hydrocodone, vicodin, heroin and oxycodone. We manually annotated tweets into three classes: no-opioid misuse, pain-misuse and recreational-misuse, the latter two representing misuse for pain or recreation/addiction. We computed the coding agreement between the two annotators using the Cohen’s Kappa statistic. We applied the Linguistic Inquiry and Word Count (LIWC) tool on historical tweets, with at least 500 words, of users in the dataset to analyze their language use and learn about their personality raits and behaviors. LIWC is a text processing software that analyzes text narratives and produces approximately 90 variables scored based on word use that pertain to phsycological, emotional, behavioral, and linguistic processes. A multiclass logistic regression model with backward selection based on the BIC criterion was used to identify variables associated with pain and recreational opioid misuse compared to the base class; no-opioid misuse.. The goal was to understand whether personal traits or behaviors differ across different classes. We reported the odd ratios of different variables in both pain and recreational related opioid misuse classes with respect to the no-opioid misuse class. RESULTS The manual annotation resulted in a total of 1,164 opioid related tweets. 229 tweets were assigned to the pain-related class, 769 were in the recreational class, and 166 tweets were tagged with no opioid misuse class. The overall inter-annotator agreement (IAA) was 0.79. Running LIWC on the tweets resulted in 55 variables. We selected the best model based on BIC. We examined the variables with the highest odd ratios to determine those associated with both pain and recreational opioid misuse as compared to the base class. Certain traits such as depression, stress, and melancholy are established in the literature as commonplace amongst opiod abuse indiviuals. In our analysis, these same characteristics, amongst others, were identified as significantly positively associated with both the Pain and Recreational groups compared to the no-opioid misuse group. Despite the different motivaions for opiod abuse, both groups present the same core personality traits. Interestingly, individuals who misuse opioids as a pain management tool exhibited higher odds ratios for psychological processees and personal traits based on their tweet language. These include a strong focus on discipline, as demonstrated by the variables “disciplined”, “cautious” and “work_oriented”. Their tweet language is also indicative of cheerfulness, a variable absent in the recreational misuse group. Variables associated with the reacreational misuse group revolve around external factors. They are generous and motivated by reward, while maintaining a religious orientation. Based on their tweet language, this group is also characterized as “active”; we understand that these individuals are more social and community focused . CONCLUSIONS To our best knowledge, this is the first study to investigate motivations of opioid abuse as it relates to tweet language. Previous studies utilizing Twitter data were limited to simply detecting opiod abuse likelihood through tweets. By delving deeper into the classes of opioid abuse and its motivation, we offer greater insight into opioid abuse behavior. This insight extends beyond simple identification, and explores patterns in motivation. We conclude that user language on Twitter is indicative of significant differences in personal traits and behaviors depending on abuse motivation: pain management or recreation.


Sign in / Sign up

Export Citation Format

Share Document