Changes in gas exchange and antioxidant metabolism on rice leaves infected by Monographella albescens

2016 ◽  
Vol 41 (1) ◽  
pp. 33-41 ◽  
Author(s):  
Sandro D. Tatagiba ◽  
Fernando W. Neves ◽  
Adriano L. F. E. Bitti ◽  
Fabrício A. Rodrigues
2015 ◽  
Vol 105 (6) ◽  
pp. 738-747 ◽  
Author(s):  
Gisele Pereira Domiciano ◽  
Isaías Severino Cacique ◽  
Cecília Chagas Freitas ◽  
Marta Cristina Corsi Filippi ◽  
Fábio Murilo DaMatta ◽  
...  

Rice blast, caused by Pyricularia oryzae, is the most important disease in rice worldwide. This study investigated the effects of silicon (Si) on the photosynthetic gas exchange parameters (net CO2 assimilation rate [A], stomatal conductance to water vapor [gs], internal-to-ambient CO2 concentration ratio [Ci/Ca], and transpiration rate [E]); chlorophyll fluorescence a (Chla) parameters (maximum photochemical efficiency of photosystem II [Fv/Fm], photochemical [qP] and nonphotochemical [NPQ] quenching coefficients, and electron transport rate [ETR]); concentrations of pigments, malondialdehyde (MDA), and hydrogen peroxide (H2O2); and activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), and lypoxigenase (LOX) in rice leaves. Rice plants were grown in a nutrient solution containing 0 or 2 mM Si (−Si or +Si, respectively) with and without P. oryzae inoculation. Blast severity decreased with higher foliar Si concentration. The values of A, gs and E were generally higher for the +Si plants in comparison with the −Si plants upon P. oryzae infection. The Fv/Fm, qp, NPQ, and ETR were greater for the +Si plants relative to the −Si plants at 108 and 132 h after inoculation (hai). The values for qp and ETR were significantly higher for the –Si plants in comparison with the +Si plants at 36 hai, and the NPQ was significantly higher for the –Si plants in comparison with the +Si plants at 0 and 36 hai. The concentrations of Chla, Chlb, Chla+b, and carotenoids were significantly greater in the +Si plants relative to the –Si plants. For the –Si plants, the MDA and H2O2 concentrations were significantly higher than those in the +Si plants. The LOX activity was significantly higher in the +Si plants than in the –Si plants. The SOD and GR activities were significantly higher for the –Si plants than in the +Si plants. The CAT and APX activities were significantly higher in the +Si plants than in the –Si plants. The supply of Si contributed to a decrease in blast severity, improved the gas exchange performance, and caused less dysfunction at the photochemical level.


Author(s):  
Adriano S. Nascente ◽  
Marta Cristina C. Filippi ◽  
Thatyane P. Sousa ◽  
Amanda A. Chaibub ◽  
Alan Carlos A. Souza ◽  
...  

Potassium (K) is the second most uptaken nutrient by upland rice crops. Beneficial microorganisms, such as Rhizobacteria participate in different processes that affect transformation of soil nutrients, making them available to plants. However, there are no information about the use of Rhizobacteria and different rates of K fertilization in this crop. To elucidate this interaction, the objective of this study was to determine the effect of the rhizobacteria Serratia spp. strain BRM 32114 and doses of K at sowing fertilization on upland rice development. The experimental design was a complete randomized block in a factorial 4 × 2 scheme with four replications, under no-tillage systems conducted in the Brazilian Cerrado during 2015/16 and 2016/17 growing seasons. The treatments consisted of four K2O doses (0, 20, 40 and 60 kg ha-1) without or with rhizobacteria applied three times in the field (on the seeds, sprayed over the soil, seven days after sowing and sprayed on the plants, 14 days after sowing). Biomass production, gas exchange, nutrient content in leaves and grain, yield components and grain yield were evaluated. The use of BRM 32114 applied in soil with high levels of K provided increase in the contents of P, Ca, Mg, Fe and Zn in rice leaves. The results showed enhances in plant biomass (7.2%), the number of panicles per plant (10%), and the grain yield of upland rice (16.3%). Therefore, our results allow inferring that the use of microorganism BRM 32114 provided significant improvements in rice growth/development, which resulted in higher grain yield over two consecutive growing seasons under field conditions. It showed that the bioagent Serratia spp. is promising to be incorporated into crop systems.


2016 ◽  
Vol 170 (2) ◽  
pp. 189-203 ◽  
Author(s):  
J.A. Rios ◽  
C.E. Aucique-Pérez ◽  
D. Debona ◽  
L.B.M. Cruz Neto ◽  
V.S. Rios ◽  
...  

2015 ◽  
Vol 105 (2) ◽  
pp. 180-188 ◽  
Author(s):  
Sandro Dan Tatagiba ◽  
Fábio Murilo DaMatta ◽  
Fabrício Ávila Rodrigues

This study was intended to analyze the photosynthetic performance of rice leaf blades infected with Monographella albescens by combining chlorophyll (Chl) a fluorescence images with gas exchange and photosynthetic pigment pools. The net CO2 assimilation rate, stomatal conductance, transpiration rate, total Chl and carotenoid pools, and Chl a/b ratio all decreased but the internal CO2 concentration increased in the inoculated plants compared with their noninoculated counterparts. The first detectable changes in the images of Chl a fluorescence from the leaves of inoculated plants were already evident at 24 h after inoculation (hai) and increased dramatically as the leaf scald lesions expanded. However, these changes were negligible for the photosystem II photochemical efficiency (Fv/Fm) at 24 hai, in contrast to other Chl fluorescence traits such as the photochemical quenching coefficient, yield of photochemistry, and yield for dissipation by downregulation; which, therefore, were much more sensitive than the Fv/Fm ratio in assessing the early stages of fungal infection. It was also demonstrated that M. albescens was able to impair the photosynthetic process in both symptomatic and asymptomatic leaf areas. Overall, it was proven that Chl a fluorescence imaging is an excellent tool to describe the loss of functionality of the photosynthetic apparatus occurring in rice leaves upon infection by M. albescens.


2015 ◽  
Vol 40 (4) ◽  
pp. 275-278 ◽  
Author(s):  
Leandro José Dallagnol ◽  
Samuel Cordeiro Vitor Martins ◽  
Fábio Murilo DaMatta ◽  
Fabrício Ávila Rodrigues

Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 797
Author(s):  
Vitor Alves Rodrigues ◽  
Carlos Alexandre Costa Crusciol ◽  
João William Bossolani ◽  
Luiz Gustavo Moretti ◽  
José Roberto Portugal ◽  
...  

(1) Background: The aim of this study was to explore whether supplementary magnesium (Mg) foliar fertilization to soybean and maize crops established in a soil without Mg limitation can improve the gas exchange and Rubisco activity, as well as improve antioxidant metabolism, converting higher plant metabolism into grain yield. (2) Methods: Here, we tested foliar Mg supplementation in soybean followed by maize. Nutritional status of plants, photosynthesis, PEPcase and Rubisco activity, sugar concentration on leaves, oxidative stress, antioxidant metabolism, and finally the crops grain yields were determined. (3) Results: Our results demonstrated that foliar Mg supplementation increased the net photosynthetic rate and stomatal conductance, and reduced the sub-stomatal CO2 concentration and leaf transpiration by measuring in light-saturated conditions. The improvement in photosynthesis (gas exchange and Rubisco activity) lead to an increase in the concentration of sugar in the leaves before grain filling. In addition, we also confirmed that foliar Mg fertilization can improve anti-oxidant metabolism, thereby reducing the environmental stress that plants face during their crop cycle in tropical field conditions. (4) Conclusions: Our research brings the new glimpse of foliar Mg fertilization as a strategy to increase the metabolism of crops, resulting in increased grain yields. This type of biological strategy could be encouraged for wide utilization in cropping systems.


Sign in / Sign up

Export Citation Format

Share Document