scholarly journals Magnesium Foliar Supplementation Increases Grain Yield of Soybean and Maize by Improving Photosynthetic Carbon Metabolism and Antioxidant Metabolism

Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 797
Author(s):  
Vitor Alves Rodrigues ◽  
Carlos Alexandre Costa Crusciol ◽  
João William Bossolani ◽  
Luiz Gustavo Moretti ◽  
José Roberto Portugal ◽  
...  

(1) Background: The aim of this study was to explore whether supplementary magnesium (Mg) foliar fertilization to soybean and maize crops established in a soil without Mg limitation can improve the gas exchange and Rubisco activity, as well as improve antioxidant metabolism, converting higher plant metabolism into grain yield. (2) Methods: Here, we tested foliar Mg supplementation in soybean followed by maize. Nutritional status of plants, photosynthesis, PEPcase and Rubisco activity, sugar concentration on leaves, oxidative stress, antioxidant metabolism, and finally the crops grain yields were determined. (3) Results: Our results demonstrated that foliar Mg supplementation increased the net photosynthetic rate and stomatal conductance, and reduced the sub-stomatal CO2 concentration and leaf transpiration by measuring in light-saturated conditions. The improvement in photosynthesis (gas exchange and Rubisco activity) lead to an increase in the concentration of sugar in the leaves before grain filling. In addition, we also confirmed that foliar Mg fertilization can improve anti-oxidant metabolism, thereby reducing the environmental stress that plants face during their crop cycle in tropical field conditions. (4) Conclusions: Our research brings the new glimpse of foliar Mg fertilization as a strategy to increase the metabolism of crops, resulting in increased grain yields. This type of biological strategy could be encouraged for wide utilization in cropping systems.

2019 ◽  
Vol 17 (1) ◽  
pp. 49-63
Author(s):  
K Pariyar ◽  
A Chaudhary ◽  
P Sapkota ◽  
S Sharma ◽  
CB Rana ◽  
...  

The effects of two tillage methods (zero tillage and conventional tillage), two residue managements (residue kept and residue removed) and two levels of cropping system (maize + soybean and sole maize) were studied over 3 years (2015-2017) at Dailekh district of Nepal. Arun-2 and Puja were the varieties of maize and soybean used respectively, followed by winter wheat. The results revealed that the maize + soybean system had significantly higher plant population and ear population (34.83 thousands ha-1 and 34.35 thousands ha-1, respectively), grains per row (37.1), ear length (16.6 cm) and 20.5% higher grain yield as compared to sole maize. The highest maize equivalent yield (7.92 t ha-1) was recorded in maize + soybean as compared to the lower grain yield equivalent (7.06 t ha-1) in sole maize. Zero tillage accounted relatively higher benefits (high net income and B:C ratio) as compared to conventional tillage. The residue kept plot resulted significantly higher B:C ratio (2.41) than the residue removed (2.11) and the maize + soybean recorded 82.5% greater B:C ratio compared to sole maize. Net annual income was significantly higher in zero tillage, residue kept and maize + soybean system (NRs. 223072.00, 222958.00 and 269016.00 ha-1 respectively). Such combinations are recommended for Dailekh district of Nepal to have profitable crop productivity. SAARC J. Agri., 17(1): 49-63 (2019)


2018 ◽  
Vol 64 (No. 4) ◽  
pp. 156-163
Author(s):  
Wang Dapeng ◽  
Zheng Liang ◽  
Gu Songdong ◽  
Shi Yuefeng ◽  
Liang Long ◽  
...  

Excessive nitrogen (N) and water input, which are threatening the sustainability of conventional agriculture in the North China Plain (NCP), can lead to serious leaching of nitrate-N (NO<sub>3</sub><sup>–</sup>-N). This study evaluates grain yield, N and water consumption, NO<sub>3</sub><sup>–</sup>-N accumulation and leaching in conventional and two optimized winter wheat-summer maize double-cropping systems and an organic alfalfa-winter wheat cropping system. The results showed that compared to the conventional cropping system, the optimized systems could reduce N, water consumption and NO<sub>3</sub><sup>–</sup>-N leaching by 33, 35 and 67–74%, respectively, while producing nearly identical grain yields. In optimized systems, soil NO<sub>3</sub><sup>–</sup>-N accumulation within the root zone was about 80 kg N/ha most of the time. In the organic system, N input, water consumption and NO<sub>3</sub><sup>–</sup>-N leaching was reduced even more (by 71, 43 and 92%, respectively, compared to the conventional system). However, grain yield also declined by 46%. In the organic system, NO<sub>3</sub><sup>–</sup>-N accumulation within the root zone was generally less than 30 kg N/ha. The optimized systems showed a considerable potential to reduce N and water consumption and NO<sub>3</sub><sup>–</sup>-N leaching while maintaining high grain yields, and thus should be considered for sustainable agricultural development in the NCP.  


2020 ◽  
Author(s):  
Wellington L Almeida ◽  
Rodrigo T Ávila ◽  
Junior P Pérez-Molina ◽  
Marcela L Barbosa ◽  
Dinorah M S Marçal ◽  
...  

Abstract The overall coordination between gas exchanges and plant hydraulics may be affected by soil water availability and source-to-sink relationships. Here we evaluated how branch growth and mortality, leaf gas exchange and metabolism are affected in coffee (Coffea arabica L.) trees by drought and fruiting. Field-grown plants were irrigated or not, and maintained with full or no fruit load. Under mild water deficit, irrigation per se did not significantly impact growth but markedly reduced branch mortality in fruiting trees, despite similar leaf assimilate pools and water status. Fruiting increased net photosynthetic rate in parallel with an enhanced stomatal conductance, particularly in irrigated plants. Mesophyll conductance and maximum RuBisCO carboxylation rate remained unchanged across treatments. The increased stomatal conductance in fruiting trees over nonfruiting ones was unrelated to internal CO2 concentration, foliar abscisic acid (ABA) levels or differential ABA sensitivity. However, stomatal conductance was associated with higher stomatal density, lower stomatal sensitivity to vapor pressure deficit, and higher leaf hydraulic conductance and capacitance. Increased leaf transpiration rate in fruiting trees was supported by coordinated alterations in plant hydraulics, which explained the maintenance of plant water status. Finally, by preventing branch mortality, irrigation can mitigate biennial production fluctuations and improve the sustainability of coffee plantations.


Soil Research ◽  
2010 ◽  
Vol 48 (2) ◽  
pp. 188 ◽  
Author(s):  
J. G. Nuttall ◽  
K. B. Hobson ◽  
M. Materne ◽  
D. B. Moody ◽  
R. Munns ◽  
...  

Subsoil physicochemical constraints such as primary salinity and high boron (B) can significantly reduce grain yields across wide areas of Australia. Financially viable amelioration options are limited for cropping systems on these soils, which has raised interest in ‘genetic solutions’. Increasing the tolerance of crops to high salinity and boron that typically co-exist within alkaline soils offers the potential for substantial yield benefits. To assess the contribution that genetic variation can make to crop yield, closely related genotypes differing in B and/or Na+ tolerance of bread and durum wheat, barley, and lentil were compared by growing the different lines in intact soil cores of 2 Calcarosol profiles differing in level of subsoil constraints (‘hostile’/’benign’). The hostile profile had salinity increasing to EC1 : 5 ~1.2 dS/m and B ~18 mg/kg to 0.60 m, whereas in the benign soil EC1 : 5 did not exceed ~0.6 dS/m and B ~11 mg/kg. Grain yields were significantly less on the hostile soil than the benign soil for barley (34%), bread wheat (20%), durum wheat (31%), and lentil (38%). Accumulation of B in shoots was significantly lower on the hostile soil across all crop species, indicating high sodium within the soil was associated with inhibited uptake of B in plants. In contrast, accumulation of Na+ was greater for all cereal crops in the hostile soil compared with the benign soil. Lentil plants with reputed sodium tolerance (CIPAL415) produced a significant yield benefit on both the benign and hostile soil over the commercial line, Nugget. The lentil line with combined Na+ and B tolerance (02-355L*03Hs005) also produced an additional yield increase over CIPAL415 on the hostile soil; however, yield was equivalent on the benign soil. For durum wheat, 2 genotypes differing in Na+ tolerance, containing either the Nax1 or Nax2 genes, accumulated less sodium in the straw than the parent cv. Tamaroi within the hostile soil; however, this did not translate to a yield advantage. For barley, there was no difference in either grain yield or B uptake in either the grain or straw between the B-tolerance line 03_007D_087 and its parent cv. Buloke. Similarly, there was no difference in either grain yield or B uptake between the bread wheat Schomburgk and its B-tolerant near-isogenic line BT-Schomburgk. This study suggests that of the cereal lines tested, there was no obvious benefit in lines with potentially improved tolerance for a single, specific subsoil constraint on alkaline soils where multiple potential constraints exist. In contrast, in lentils, incorporating tolerance to Na+ and B did show promise for increased adaptation to soils with subsoil constraints.


1999 ◽  
Vol 35 (1) ◽  
pp. 1-13 ◽  
Author(s):  
D. P. Sherchan ◽  
C. J. Pilbeam ◽  
P. J. Gregory

Farmers in the mid-hills of Nepal have a mix of rainfed land on which millet is grown in relay after maize (maize/millet), and irrigated land on which wheat is grown sequentially after rice (wheat–rice). Double cropping is the norm but the diminishing quantities of organic materials, coupled with the trend towards increased use of inorganic fertilizers, have raised questions about the long-term productivity and sustainability of the cropping systems. The aim of this work was to examine the long-term effects (eight years) on grain yield of additions of manure and fertilizer either singly or in combination. Maize/millet and wheat–rice rotations were established on a Dystochrept at Pakhribas Agricultural Centre at about 1450 m altitude. Manure and fertilizer applications were applied to the maize (eight combinations in May) and the wheat (different rates in seven combinations in November) every year with the succeeding crops (millet and rice) utilizing residual nutrients. Yields of maize, millet and rice were greater when manure rather than fertilizer was applied but yields of wheat were less. The combined application of manure and fertilizer significantly increased yields of maize and wheat compared with applications of either manure or fertilizer alone. However, for the subsequent crops (millet and rice) there was either a small residual benefit of the combined application when compared with fertilizer alone, or no benefit when compared with manure alone. Overall, the combined application increased total grain yields by about 35% in the maize/millet rotation and by 16% in the wheat–rice rotation. There was no trend in yields in response to treatment with time.


1971 ◽  
Vol 77 (3) ◽  
pp. 453-461 ◽  
Author(s):  
R. W. Willey ◽  
R. Holliday

SUMMARYThree wheat experiments are described in which a range of plant populations were shaded during different periods of development; in two of the experiments plant thinning was also carried out at a number of growth stages. Shading during the period of ear development caused an appreciable decrease in grain yield by decreasing the number of grains per ear. Shading during the grain filling period also reduced grain yield, this being brought about by decreased grain size. Thus in contrast to the barley experiments reported earlier (Willey & Holhday, 1971), these particular results gave no indication of a potential surplus of carbohydrate for grain filling and an associated limited ear capacity. However, when plant thinning was carried out at anthesis to make more carbohydrate available for grain filling in the remaining ears, grain yield per ear did not increase. It is argued, therefore, that grain yield probably was determined at least partly by a limited ear capacity. Plant thinning at earlier stages showed how the development of competition during the ear development period progressively reduced the potential capacity of the ear; the greater competition of higher plant populations accelerated this reduction in ear potential.From an examination of the effects of plant population, it is suggested that the number of grains per ear is the component having greatest influence on the decline in grain yield at above-optimum populations. The possible importance of the number of grains per unit area as an indicator of ear capacity on an area basis, and as a determinant of grain yield per unit area, is emphasized. A close relationship between grain yield per unit area and number of grains per unit area is illustrated for a number of plant-population response curves, and it is suggested that the decrease in grain yield at high populations is probably determined by a decrease in the number of grains per unit area. Evidence is presented to substantiate the idea put forward in the barley paper that this decrease in the number of grains per unit area may be attributable more to a lower production of total dry matter by the high populations during the later stages of ear development, than to an unfavourable partitioning of such dry matter between the ear and the rest of the plant.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 771A-771
Author(s):  
J.C. Melgar ◽  
J. Dunlop ◽  
J.P. Syvertsen* ◽  
F. García-Sánchez

Physiological responses of olive cuttings of `Koroneiki' and `Picual' (Olea europaea L.) to zero or high salinity (NaCl 100 mmol·L-1) and to ambient CO2 (380 ppm) or elevated (700 ppm) CO2 concentration were studied in sand culture in greenhouses. Growth parameters, net gas exchange of leaves and leaf chloride concentration were measured after two months of treatment. `Koroneiki' had significantly greater shoot growth and net assimilation of CO2 (Ac) at elevated CO2 than at ambient CO2 but this difference disappeared under salt stress. Growth and Ac of `Picual' did not respond to elevated CO2 regardless of salinity treatment. Stomatal conductance and leaf transpiration were lower at elevated CO2 such that leaf water use efficiency increased at elevated CO2 in both cultivars regardless of saline treatment. The saline treatment increased leaf chloride (Cl) concentration and reduced growth and net gas exchange responses in both cultivars. There was no difference in leaf Cl accumulation between the two varieties. At high salinity, elevated CO2 had little effect on leaf Cl implying that at least in `Koroneiki', Cl accumulation was not closely linked to water uptake.


2020 ◽  
Vol 7 (4) ◽  
pp. 49-58
Author(s):  
Pablo Wenderson Ribeiro Coutinho ◽  
Márcia De Moraes Echer ◽  
Vandeir Francisco Guimarães ◽  
Maria Do Carmo Lana ◽  
Adriano Mitio Inagaki ◽  
...  

The objective was to evaluate the effect of calcium silicate on the chlorophyll content and gas exchange of two tomato hybrids. The design used was in randomized blocks in a 2x5 factorial scheme, with four replications. The first factor was composed of two tomato hybrids: Ivety and Natália, and the second factor was composed of five doses of calcium silicate (0, 150, 300, 450, and 600 kg ha-1), applied to the substrate before planting the seedlings. Gas exchange: net CO2 assimilation rate (A), leaf transpiration rate (E), stomatal conductance (gs), internal CO2 concentration (Ci), water-use efficiency (WUE), intrinsic efficiency water use (iWUE), and instant carboxylation efficiency (ACi); SPAD index and the levels of chlorophylls a, b, and total were evaluated. The analyzes were performed in the stages of first flowering (17 days after transplanting - DAT), full flowering (58 DAT), and full fruiting (78 DAT). At 17 DAT, no difference was observed for gas exchange variables and photosynthetic pigments. The application of calcium silicate reduced gas exchange and photosynthetic pigments at 58 DAT. The hybrid Natália had the highest A, WUE, iWUE, and ACi at 78 DAT. However, the hybrid Ivety in the same growth stage, in full fruiting, was superior only for the internal concentration of CO2 and SPAD index, with no difference for photosynthetic pigments.


2015 ◽  
Vol 18 (1-2) ◽  
pp. 1-7
Author(s):  
B Karmakar ◽  
MA R Sarkar ◽  
MA Ali ◽  
SM Haefele

A study was conducted at the Bangladesh Rice Research Institute, regional station farm, Rajshahi, Bangladesh, during 2010 and 2011 wet seasons to determine the effect of plant density on the performance of different genotypes. Three plant densities (20- × 15-, 20- × 20- and 25- × 15-cm spacing) and six genotypes (BRRI dhan56, BRRI dhan57, IR83377-B-B-93-3, IRRI 123, IR83381-B-B-6-1 and Binadhan-7) were tested in a strip-plot design with three replications, placing planting densities in the vertical plots and genotypes in the horizontal plots. Planting density × genotype produced significant effect on grain yield in 2011 but not in 2010. BRRI dhan56, BRRI dhan57 and IR83381-B-B-6-1 produced the highest grain yield in 20- × 15-cm spacing, while the other genotypes (IR83377-B-B-93-3, IRRI 123 and Binadhan-7) produced the higher yields in 25- × 15- or 20- × 20-cm spacing. In both years, genotypes had significant effects on grain yield, all yield components, growth duration, plant height, tillers hill-1 and tillers m-2, but not on straw and biological yield. Among the genotypes, IR83377-B-B-93-3 gave the highest mean grain yield (5.11 t ha-1) followed by IRRI 123 (4.97 t ha-1). The lowest mean yield (4.04 t ha-1) was found in BRRI dhan57 followed by IR83381-B-B-6-1 (4.14 t ha-1). Planting density had significant effects on grain yield, panicles hill-1, panicles m-2, tillers hill-1 and tillers m-2, and closer spacing reduced the number of days to flowering and maturity. Short duration rice genotypes achieved higher grain yields in closer spacing while longer duration genotypes produced higher grain yields in wider spacing. Results of this investigation suggest that the optimal plant density is dependent on varietal characteristics, and that current fixed planting densities used in many rice cropping systems are probably not adequate.Bangladesh Rice j. 2014, 18(1&2): 1-7


1992 ◽  
Vol 43 (1) ◽  
pp. 1 ◽  
Author(s):  
WK Anderson

Factorial experiments were conducted at eight sites in the central wheatbelt of Western Australia over two seasons. Time of sowing (mid-May, early June), cultivar (old tall, new semi-dwarf), nitrogen (N) fertilizer (- or +) and amount of seed sown (low and high) were combined as treatments, and grain yield, yield components, biomass, grain quality, water use, soil chemical and weather variables were measured. The aim was to increase grain yield by combining relevant agronomic inputs and increasing the seasonal water use or water use efficiency. Grain yields were increased by from 30 to over 100% by the combination of mid-May sowing, semi-dwarf cultivar, N fertilizer and increased seed level (high-inputs) compared to early June sowing, old tall cultivar, without N and lower seed level (low-inputs). The yield improvements mostly came from increased dry matter production at anthesis, largely due to increased applications of N and seed. Ear and kernel numbers were also increased by earlier sowing and N fertilizer and to a lesser extent by cultivar and increased weight of seed sown. Water use was increased at most sites, especially in the post-anthesis period and water use efficiency of grain production was increased at all sites. Soil evaporation was reduced by the high-input treatments and the low-input treatments did not use water supplies of > 250 mm efficiently in grain production. It was concluded that appropriate combinations of cultivar and agronomic practices can increase grain yields linearly up to about 5 t ha-1 at seasonal water use of about 400 mm, even in situations where considerable water stress occurs during grain filling. Grain protein concentration was generally increased and hectolitre weight and small grain sievings were not adversely affected by increasing agronomic inputs.


Sign in / Sign up

Export Citation Format

Share Document