scholarly journals Gas Exchange Characteristics in Rice Leaves Grown under the Conditions of Physiologically Low Temperature and Irradiance

1998 ◽  
Vol 39 (12) ◽  
pp. 1384-1387 ◽  
Author(s):  
K. Ohashi ◽  
A. Makino ◽  
T. Mae
Author(s):  
Gaku Amada ◽  
Yoshiko Kosugi ◽  
Kanehiro Kitayama ◽  
Yusuke Onoda

Dense leaf trichomes can directly decrease gas fluxes through increased gas diffusion resistance and indirectly increase gas fluxes through increased leaf temperature due to increased heat diffusion resistance, which may contribute to adaptation to dry and/or low‐temperature conditions. However, it remains unclear whether the leaf‐trichome resistance increases or decreases the gas‐exchange rates through combined direct and indirect effects. We focused on Metrosideros polymorpha, a dominant tree species inhabiting a large range of environmental gradients in the Hawaiian Islands, whose leaves have an enormous variation in trichome thickness on the lower surface. In five elevational sites, we measured leaf morphological and physiological traits including trichome thickness, gas‐exchange characteristics, and leaf temperature. The trichome thickness was largest in the coldest and driest site and thinnest at the wettest site. Leaf temperature was significantly increased with trichome thickness. With biophysical and physiological models, we show that leaf trichomes can increase the daily photosynthesis through increasing leaf temperature only in the cold alpine area. The daily water‐use efficiency can be lower with increasing leaf trichomes at any elevational sites. Therefore, in terms of diffusion resistance, the leaf trichomes of M. polymorpha can contribute to the adaptation to low‐temperature environments but not to dry environments.


2007 ◽  
Vol 164 (10) ◽  
pp. 1391-1393 ◽  
Author(s):  
Juan Jose Almaraz ◽  
Xiaomin Zhou ◽  
Alfred Souleimanov ◽  
Donald Smith

2015 ◽  
Vol 105 (6) ◽  
pp. 738-747 ◽  
Author(s):  
Gisele Pereira Domiciano ◽  
Isaías Severino Cacique ◽  
Cecília Chagas Freitas ◽  
Marta Cristina Corsi Filippi ◽  
Fábio Murilo DaMatta ◽  
...  

Rice blast, caused by Pyricularia oryzae, is the most important disease in rice worldwide. This study investigated the effects of silicon (Si) on the photosynthetic gas exchange parameters (net CO2 assimilation rate [A], stomatal conductance to water vapor [gs], internal-to-ambient CO2 concentration ratio [Ci/Ca], and transpiration rate [E]); chlorophyll fluorescence a (Chla) parameters (maximum photochemical efficiency of photosystem II [Fv/Fm], photochemical [qP] and nonphotochemical [NPQ] quenching coefficients, and electron transport rate [ETR]); concentrations of pigments, malondialdehyde (MDA), and hydrogen peroxide (H2O2); and activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), and lypoxigenase (LOX) in rice leaves. Rice plants were grown in a nutrient solution containing 0 or 2 mM Si (−Si or +Si, respectively) with and without P. oryzae inoculation. Blast severity decreased with higher foliar Si concentration. The values of A, gs and E were generally higher for the +Si plants in comparison with the −Si plants upon P. oryzae infection. The Fv/Fm, qp, NPQ, and ETR were greater for the +Si plants relative to the −Si plants at 108 and 132 h after inoculation (hai). The values for qp and ETR were significantly higher for the –Si plants in comparison with the +Si plants at 36 hai, and the NPQ was significantly higher for the –Si plants in comparison with the +Si plants at 0 and 36 hai. The concentrations of Chla, Chlb, Chla+b, and carotenoids were significantly greater in the +Si plants relative to the –Si plants. For the –Si plants, the MDA and H2O2 concentrations were significantly higher than those in the +Si plants. The LOX activity was significantly higher in the +Si plants than in the –Si plants. The SOD and GR activities were significantly higher for the –Si plants than in the +Si plants. The CAT and APX activities were significantly higher in the +Si plants than in the –Si plants. The supply of Si contributed to a decrease in blast severity, improved the gas exchange performance, and caused less dysfunction at the photochemical level.


2016 ◽  
Vol 41 (1) ◽  
pp. 33-41 ◽  
Author(s):  
Sandro D. Tatagiba ◽  
Fernando W. Neves ◽  
Adriano L. F. E. Bitti ◽  
Fabrício A. Rodrigues

Biomolecules ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1693
Author(s):  
Javaria Afzal ◽  
Muhammad Hamzah Saleem ◽  
Fatima Batool ◽  
Ali Mohamed Elyamine ◽  
Muhammad Shoaib Rana ◽  
...  

The impact of heavy metal, i.e., cadmium (Cd), on the growth, photosynthetic pigments, gas exchange characteristics, oxidative stress biomarkers, and antioxidants machinery (enzymatic and non-enzymatic antioxidants), ions uptake, organic acids exudation, and ultra-structure of membranous bounded organelles of two rice (Oryza sativa L.) genotypes (Shan 63 and Lu 9803) were investigated with and without the exogenous application of ferrous sulfate (FeSO4). Two O. sativa genotypes were grown under different levels of CdCl2 [0 (no Cd), 50 and 100 µM] and then treated with exogenously supplemented ferrous sulfate (FeSO4) [0 (no Fe), 50 and 100 µM] for 21 days. The results revealed that Cd stress significantly (p < 0.05) affected plant growth and biomass, photosynthetic pigments, gas exchange characteristics, affected antioxidant machinery, sugar contents, and ions uptake/accumulation, and destroy the ultra-structure of many membranous bounded organelles. The findings also showed that Cd toxicity induces oxidative stress biomarkers, i.e., malondialdehyde (MDA) contents, hydrogen peroxide (H2O2) initiation, and electrolyte leakage (%), which was also manifested by increasing the enzymatic antioxidants, i.e., superoxidase dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) and non-enzymatic antioxidant compounds (phenolics, flavonoids, ascorbic acid, and anthocyanin) and organic acids exudation pattern in both O. sativa genotypes. At the same time, the results also elucidated that the O. sativa genotypes Lu 9803 are more tolerant to Cd stress than Shan 63. Although, results also illustrated that the exogenous application of ferrous sulfate (FeSO4) also decreased Cd toxicity in both O. sativa genotypes by increasing antioxidant capacity and thus improved the plant growth and biomass, photosynthetic pigments, gas exchange characteristics, and decrease oxidative stress in the roots and shoots of O. sativa genotypes. Here, we conclude that the exogenous supplementation of FeSO4 under short-term exposure of Cd stress significantly improved plant growth and biomass, photosynthetic pigments, gas exchange characteristics, regulate antioxidant defense system, and essential nutrients uptake and maintained the ultra-structure of membranous bounded organelles in O. sativa genotypes.


2001 ◽  
Vol 23 (3) ◽  
pp. 522-525 ◽  
Author(s):  
ELIEMAR CAMPOSTRINI ◽  
OSVALDO KIYOSHI YAMANISHI ◽  
CARLOS A. MARTINEZ

In this research, was used four papaya (Carica papaya L.) genotypes: three from the 'Solo ( Sunrise Solo TJ, Sunrise Solo 72/12 and Baixinho de Santa Amália) group and one from the 'Formosa' group (Know-You 01). They were grown in plastic pots containing a sandy-clay-loam soil subjected to pH correction and fertilization, under greenhouse conditions. Throughout the experimental period plants were subjected to periodic irrigation to maintain the soil humitidy around field capacity. The experiment was conducted 73 days after sowing. In all genotypes, leaf gas exchange characteristics were determined. The net photosynthetic rate (A, mumol m-2 s-1 ), stomatal conductance (g s mol m-2 s-1), leaf temperature (T I, 0C) and intercellular carbon dioxide concentration (ci, muL L-1) on the 4th, 5th, 6th, 7th, 8th and 9th leaves from the plant apex were determined. No significant differences were observed for A, g s, c i, or Tl either among the leaves sampled from any of the genotypes. A was positively correlated with g s and in the other hand T I and g s were negatively correlated. The results suggest that, for 73 DAP, all the sampled papaya leaves functioned as sources of organs.


Sign in / Sign up

Export Citation Format

Share Document