scholarly journals The description of friction of silicon MEMS with surface roughness: virtues and limitations of a stochastic Prandtl–Tomlinson model and the simulation of vibration-induced friction reduction

2010 ◽  
Vol 1 ◽  
pp. 163-171 ◽  
Author(s):  
W Merlijn van Spengen ◽  
Viviane Turq ◽  
Joost W M Frenken

We have replaced the periodic Prandtl–Tomlinson model with an atomic-scale friction model with a random roughness term describing the surface roughness of micro-electromechanical systems (MEMS) devices with sliding surfaces. This new model is shown to exhibit the same features as previously reported experimental MEMS friction loop data. The correlation function of the surface roughness is shown to play a critical role in the modelling. It is experimentally obtained by probing the sidewall surfaces of a MEMS device flipped upright in on-chip hinges with an AFM (atomic force microscope). The addition of a modulation term to the model allows us to also simulate the effect of vibration-induced friction reduction (normal-force modulation), as a function of both vibration amplitude and frequency. The results obtained agree very well with measurement data reported previously.

2012 ◽  
Vol 622-623 ◽  
pp. 361-365 ◽  
Author(s):  
Vikas Upadhyay ◽  
P.K. Jain ◽  
N.K. Mehta

This work presents the influence of workpiece preheat temperatures on the machinability of Ti-6Al-4V alloy and chip formation. Machinability has been studied in terms of cutting forces, surface roughness and tool wear. Influence of preheat temperatures on chip morphology and roughness of chip back surface has been studied using scanning electron microscope and atomic force microscope respectively to get better insight of tribology at tool-chip interface. Based on overall observations, preheat temperature of 300 0C was found as the most appropriate parameter.


Lubricants ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 70
Author(s):  
Thi D. Ta ◽  
Bach H. Tran ◽  
Kiet Tieu

Nowadays, the increasing demand to reduce energy consumption and improve process reliability requires an alternative lubricant with an effective tribological performance and environmentally friendly properties to replace traditional lubricants in hot steel manufacturing. The current work reviews recent comprehensive experimental and theoretical investigations in a new generation of alkaline-based glass lubricants, with phosphate, borate, and silicate being intensively researched. This class of lubricants showed an outstanding friction reduction, anti-wear, and anti-oxidation performance on coupled steel pairs over a wide range of temperatures (from 650 °C to 1000 °C). Each type had different tribochemical reactions within itself and with oxidized steel surfaces, which were largely determined by their chemical nature. In addition, the critical role of each structural component was also determined and corroborated by computational simulation. The theoretical studies at quantum and atomic levels reinforced our experimental findings by providing insights into the reaction mechanism using the static and dynamic simulations of the adsorption of lubricant molecules onto iron oxide surfaces. Additionally, the new reactive molecular dynamics (MD) model developed for alkali phosphate will need to be extended further to consider the realistic operating conditions of these lubricants at the atomic scale.


Author(s):  
B Bhushan

Atomic force microscopy/friction force microscopy (AFM/FFM) techniques are increasingly used for tribological studies of engineering surfaces at scales ranging from atomic and molecular to microscales. These techniques have been used to study surface roughness, adhesion, friction, scratching/wear, indentation, detection of material transfer and boundary lubrication and for nanofabrication/nanomachining purposes. Micro/nanotribological studies of materials of scientific and engineering interest have been conducted. Commonly measured roughness parameters are found to be scale dependent, requiring the need of scale-independent fractal parameters to characterize surface roughness. Measurement of atomic-scale friction of a freshly cleaved highly orientated pyrolytic graphite exhibited the same periodicity as that of corresponding topography. However, the peaks in friction and those in corresponding topography were displaced relative to each other. Variations in atomic-scale friction and the observed displacement have been explained by the variations in interatomic forces in the normal and lateral directions. Local variation in microscale friction is found to correspond to the local slope, suggesting that a ratchet mechanism is responsible for this variation. Directionality in the friction is observed on both micro- and macroscales which results from the surface preparation and anisotropy in surface roughness. Microscale friction is generally found to be smaller than macroscale friction as there is less ploughing contribution in microscale measurements. Microscale friction is load dependent and friction values increase with an increase in the normal load, approaching the macrofriction at contact stresses higher than the hardness of the softer material. The wear rate for single-crystal silicon is negligible below 20 μN and is much higher and remains approximately constant at higher loads. Elastic deformation at low loads is responsible for negligible wear. The mechanism of material removal on a microscale is studied. At the loads used in the study, material is removed by the ploughing mode in a brittle manner without much plastic deformation. Most of the wear debris is loose. Evolution of the wear has also been studied using AFM. Wear is found to be initiated at nanoscratches. AFM has been modified to obtain load-displacement curves and for measurement of nanoindentation hardness and Young's modulus of elasticity, with the depth of indentation as low as 1 nm. Hardness of ceramics on the nanoscale is found to be higher than that on the microscale. Ceramics exhibit significant plasticity and creep on the nanoscale. Scratching and indentation on nanoscales are powerful ways to screen for adhesion and resistance to deformation of ultra-thin films. Detection of material transfer on the nanoscale is possible with AFM. Boundary lubrication studies and measurement of lubricant-film thickness with a lateral resolution on a nanoscale have been conducted using AFM. Self-assembled monolayers and chemically bonded lubricant films with a mobile fraction are superior in wear resistance. Friction and wear on micro- and nanoscales at low loads have been found to be generally smaller compared to that at macroscales. Therefore, micro/nanotribological studies may help define the regimes for ultra-low friction and near-zero wear.


Author(s):  
H. Kinney ◽  
M.L. Occelli ◽  
S.A.C. Gould

For this study we have used a contact mode atomic force microscope (AFM) to study to topography of fluidized cracking catalysts (FCC), before and after contamination with 5% vanadium. We selected the AFM because of its ability to well characterize the surface roughness of materials down to the atomic level. It is believed that the cracking in the FCCs occurs mainly on the catalysts top 10-15 μm suggesting that the surface corrugation could play a key role in the FCCs microactivity properties. To test this hypothesis, we chose vanadium as a contaminate because this metal is capable of irreversibly destroying the FCC crystallinity as well as it microporous structure. In addition, we wanted to examine the extent to which steaming affects the vanadium contaminated FCC. Using the AFM, we measured the surface roughness of FCCs, before and after contamination and after steaming.We obtained our FCC (GRZ-1) from Davison. The FCC is generated so that it contains and estimated 35% rare earth exchaged zeolite Y, 50% kaolin and 15% binder.


Author(s):  
M. Iwatsuki ◽  
S. Kitamura ◽  
A. Mogami

Since Binnig, Rohrer and associates observed real-space topographic images of Si(111)-7×7 and invented the scanning tunneling microscope (STM),1) the STM has been accepted as a powerful surface science instrument.Recently, many application areas for the STM have been opened up, such as atomic force microscopy (AFM), magnetic force microscopy (MFM) and others. So, the STM technology holds a great promise for the future.The great advantages of the STM are its high spatial resolution in the lateral and vertical directions on the atomic scale. However, the STM has difficulty in identifying atomic images in a desired area because it uses piezoelectric (PZT) elements as a scanner.On the other hand, the demand to observe specimens under UHV condition has grown, along with the advent of the STM technology. The requirment of UHV-STM is especially very high in to study of surface construction of semiconductors and superconducting materials on the atomic scale. In order to improve the STM image quality by keeping the specimen and tip surfaces clean, we have built a new UHV-STM (JSTM-4000XV) system which is provided with other surface analysis capability.


2020 ◽  
Author(s):  
Benjamin P. A. Gabriele ◽  
Craig J. Williams ◽  
Douglas Stauffer ◽  
Brian Derby ◽  
Aurora J. Cruz-Cabeza

<div> <div> <div> <p>Single crystals of aspirin form I were cleaved and indented on their dominant face. Upon inspection, it was possible to observe strongly anisotropic shallow lateral cracks due to the extreme low surface roughness after cleavage. Atomic Force Microscopy (AFM) imaging showed spalling fractures nucleating from the indent corners, forming terraces with a height of one or two interplanar spacings d100. The formation of such spalling fractures in aspirin was rationalised using basic calculations of attachment energies, showing how (100) layers are poorly bonded when compared to their relatively higher intralayer bonding. An attempt at explaining the preferential propagation of these fractures along the [010] direction is discussed. </p> </div> </div> </div>


2020 ◽  
Author(s):  
Benjamin P. A. Gabriele ◽  
Craig J. Williams ◽  
Douglas Stauffer ◽  
Brian Derby ◽  
Aurora J. Cruz-Cabeza

<div> <div> <div> <p>Single crystals of aspirin form I were cleaved and indented on their dominant face. Upon inspection, it was possible to observe strongly anisotropic shallow lateral cracks due to the extreme low surface roughness after cleavage. Atomic Force Microscopy (AFM) imaging showed spalling fractures nucleating from the indent corners, forming terraces with a height of one or two interplanar spacings d100. The formation of such spalling fractures in aspirin was rationalised using basic calculations of attachment energies, showing how (100) layers are poorly bonded when compared to their relatively higher intralayer bonding. An attempt at explaining the preferential propagation of these fractures along the [010] direction is discussed. </p> </div> </div> </div>


Author(s):  
Hui Peng Ng ◽  
Ghim Boon Ang ◽  
Chang Qing Chen ◽  
Alfred Quah ◽  
Angela Teo ◽  
...  

Abstract With the evolution of advanced process technology, failure analysis is becoming much more challenging and difficult particularly with an increase in more erratic defect types arising from non-visual failure mechanisms. Conventional FA techniques work well in failure analysis on defectively related issue. However, for soft defect localization such as S/D leakage or short due to design related, it may not be simple to identify it. AFP and its applications have been successfully engaged to overcome such shortcoming, In this paper, two case studies on systematic issues due to soft failures were discussed to illustrate the AFP critical role in current failure analysis field on these areas. In other words, these two case studies will demonstrate how Atomic Force Probing combined with Scanning Capacitance Microscopy were used to characterize failing transistors in non-volatile memory, identify possible failure mechanisms and enable device/ process engineers to make adjustment on process based on the electrical characterization result. [1]


2006 ◽  
Vol 113 ◽  
pp. 334-338
Author(s):  
Z. Dreija ◽  
O. Liniņš ◽  
Fr. Sudnieks ◽  
N. Mozga

The present work deals with the computation of surface stresses and deformation in the presence of friction. The evaluation of the elastic-plastic contact is analyzed revealing three distinct stages that range from fully elastic through elastic-plastic to fully plastic contact interface. Several factors of sliding friction model are discussed: surface roughness, mechanical properties and contact load and areas that have strong effect on the friction force. The critical interference that marks the transition from elastic to elastic- plastic and plastic deformation is found out and its connection with plasticity index. A finite element program for determination contact analysis of the assembled details and due to details of deformation that arose a normal and tangencial stress is used.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 655
Author(s):  
Alisher M. Kariev ◽  
Michael E. Green

There are reasons to consider quantum calculations to be necessary for ion channels, for two types of reasons. The calculations must account for charge transfer, and the possible switching of hydrogen bonds, which are very difficult with classical force fields. Without understanding charge transfer and hydrogen bonding in detail, the channel cannot be understood. Thus, although classical approximations to the correct force fields are possible, they are unable to reproduce at least some details of the behavior of a system that has atomic scale. However, there is a second class of effects that is essentially quantum mechanical. There are two types of such phenomena: exchange and correlation energies, which have no classical analogues, and tunneling. Tunneling, an intrinsically quantum phenomenon, may well play a critical role in initiating a proton cascade critical to gating. As there is no classical analogue of tunneling, this cannot be approximated classically. Finally, there are energy terms, exchange and correlation energy, whose values can be approximated classically, but these approximations must be subsumed within classical terms, and as a result, will not have the correct dependence on interatomic distances. Charge transfer, and tunneling, require quantum calculations for ion channels. Some results of quantum calculations are shown.


Sign in / Sign up

Export Citation Format

Share Document