Optimizing the Pouring Temperature for Semisolid Casting of a Hypereutectic Al–Si Alloy Using the Cooling Slope Plate Method

Author(s):  
M. M. Shehata ◽  
S. El-Hadad ◽  
M. E. Moussa ◽  
M. El-Shennawy
2011 ◽  
Vol 675-677 ◽  
pp. 767-770 ◽  
Author(s):  
Jun Xu ◽  
Tong Min Wang ◽  
Zong Ning Chen ◽  
Jing Zhu ◽  
Zhi Qiang Cao ◽  
...  

In order to obtain the non-dendritic feedstock for the semisolid forming process, a cooling slope processing was used. In this work, the effects of the angle, length of cooling slope and pouring temperature on the microstructure of A356 aluminum alloy were investigated. It showed that these parameters affect the size and morphology of α-Al phase to some extent. The results indicate that a pouring temperature of 650°C and a cooling slope with 45° in angle and 50 cm in length are the optimum parameters for preparing fine and globular grain structures. To eliminate the solidification shell formed in the surface of cooling slope, a nitride dope was coated on the surface of the cooling slope.


2011 ◽  
Vol 264-265 ◽  
pp. 272-277 ◽  
Author(s):  
Nurşen Saklakoğlu ◽  
S. Gencalp ◽  
Şefika Kasman ◽  
İ.E. Saklakoğlu

Thixoforming and related semi-solid processing (SSP) methods require thixotropic materials. One of the many SSP techniques is the cooling slope (CS) casting process, which is simple and has minimal equipment requirements, and which is able to produce feedstock materials for semisolid processing. When the feedstock is reheated to the semisolid temperature range, non-dendritic, spheroidal solid particles in a liquid matrix suitable for thixoforming are obtained. In this study, equipment for the CS technique was first established, and then the effects of the pouring temperature and inclined slope angle on the microstructures of A380 aluminum alloy (ISOAlSi8Cu3Fe) were studied. Optimum parameters for thixoforming experiments were selected, and it was found that the microstructure produced by the inclined plate depended on its angle and the pouring temperature.


2014 ◽  
Vol 915-916 ◽  
pp. 602-607 ◽  
Author(s):  
Y.T. Chen ◽  
Chi Y.A. Tsao ◽  
C.H. Chiang

The cooling slope technique has been developed in recent years, which controls the nucleation and growth of the primary grains during solidification to achieve fine and non-dendritic microstructures. In this study, A356 Al alloys were processed through a modified cooling slope technique to obtain fine, non-dendritic microstructures, in which the cooling rate of the cast crucible was controlled. Three process parameters, namely pouring temperature, inclined slope angle, and the cooling rate of the cast crucible, were varied during the processing. The cooling slope was water-cooled with a constant water flow rate. The solid fraction and the size distributions of the primary grains along the vertical and horizontal positions of the cast ingots were measured individually. The macro-segregation was examined in terms of the distribution of the solid fraction. The yields of the ingots were calculated for studying the efficiency of the cooling slope technique. The effects of the three process parameters on the microstructures, macro-segregation, and yields were studied by the Taguchi method.


2016 ◽  
Vol 682 ◽  
pp. 220-225
Author(s):  
Do Minh Duc ◽  
Nguyen Hong Hai

Rheo-continuous casting method is a combination of rheo- and continuous castings. In rheo-casting process the nucleation occurs on cooling slope with high rate in whole casting volume, so nuclei are numerous, resulting in very fine microstructure of nodular crystals. In this work the rheo-continuous process was carried out with a casting machine using 2 rollers of same size: diameter of 300 mm and width of 100 mm. The pouring temperature is near-liquidus. The microstructure obtained is fine (grain size < 40 μm), with nodular morphology. The mechanical properties of as-cast samples were high (the tensile strength is above 220 MPa).


2022 ◽  
Vol 327 ◽  
pp. 293-299
Author(s):  
Antonio de Pádua Lima Filho ◽  
Lucas Veronez Goulart Ferreira ◽  
Pedro Barbosa de Oliveira Neto ◽  
Fabian Hoisand ◽  
Rodrigo Alessandro Nunes de Oliveira ◽  
...  

Recycled Al–Si (9.2%) alloy contaminated with Fe (0.3%), Pb (3.1%) and Sn (11.4 %) was cast and poured at 650 oC, approximately 50 oC above the liquidus line. A cooling slope was used to obtain a semisolid material that feeds a ceramic nozzle designed to function as a good contact area for solidification and improve the quality of strip casting. The internally cooled material rolls in soluble oil (1 oil / 9 water) at a rate of 0.2 l/s and works as a heat exchanger which drags the metallic slurry puddle generated at the roll surface at a speed of 0.12 m/s. This forms a metallic strip with a thickness of 2 mm and a width varying from approximately 45 mm to 60 mm. The cooling system of the rolls, combined with four springs placed at the housing screw, prevented adhering of the metallic strip during production at a pressure of approximately 450 N. Cracks were observed on the strip surfaces; however, these defects did not interrupt the continuous flow of the solidified strip during manufacturing. The strip’s poor surface quality could be related to the Pb and Sn contamination as well as cold cracks due to the low pouring temperature. Al-Si eutectics positioned at a grain boundary of α-Al globular structures, as well as the presence of a Sn phase, resulted in a metallic strip with a yield stress, maximum stress and elongation of 94.5 MPa, 100.2 MPa and 1.6%, respectively.


2014 ◽  
Vol 663 ◽  
pp. 261-265
Author(s):  
M.S. Salleh ◽  
M.Z. Omar ◽  
Junaidi Syarif ◽  
M.N. Mohammed ◽  
K.S. Alhawari

A319 aluminum alloys are commonly used in automotive industry due to a combination of good fluidity and mechanical strength. In this present work, cooling slope (CS) rheocasting process was employed to produce A319 billets with near spherical morphology of primary Al phase. The dendritic primary phase in the cast A319 alloy had readily transformed into non-dendritic when the ingots were cast over a cooling plate from pouring temperatures between 620°C and 640°C and with cooling lengths of between 300 mm and 400 mm. The shear driven flow of the solidifying melt on the cooling slope wall promotes heterogeneous nucleation of α-Al phase and subsequent separation from there due to shear driven flow of the solidifying melt produced nearly spheroidal morphology of the primary phase in the microstructure. The results show that the best combination of pouring temperature and cooling length was found to be 630°C and 400 mm respectively. The hardness of the rheocast ingots improved to 85.3 HV from 81.8 HV in as-cast condition.


Sign in / Sign up

Export Citation Format

Share Document