Study on Rheo-Continuous Casting of Al-Si A356 (EN AC4200) Alloys

2016 ◽  
Vol 682 ◽  
pp. 220-225
Author(s):  
Do Minh Duc ◽  
Nguyen Hong Hai

Rheo-continuous casting method is a combination of rheo- and continuous castings. In rheo-casting process the nucleation occurs on cooling slope with high rate in whole casting volume, so nuclei are numerous, resulting in very fine microstructure of nodular crystals. In this work the rheo-continuous process was carried out with a casting machine using 2 rollers of same size: diameter of 300 mm and width of 100 mm. The pouring temperature is near-liquidus. The microstructure obtained is fine (grain size < 40 μm), with nodular morphology. The mechanical properties of as-cast samples were high (the tensile strength is above 220 MPa).

2011 ◽  
Vol 264-265 ◽  
pp. 272-277 ◽  
Author(s):  
Nurşen Saklakoğlu ◽  
S. Gencalp ◽  
Şefika Kasman ◽  
İ.E. Saklakoğlu

Thixoforming and related semi-solid processing (SSP) methods require thixotropic materials. One of the many SSP techniques is the cooling slope (CS) casting process, which is simple and has minimal equipment requirements, and which is able to produce feedstock materials for semisolid processing. When the feedstock is reheated to the semisolid temperature range, non-dendritic, spheroidal solid particles in a liquid matrix suitable for thixoforming are obtained. In this study, equipment for the CS technique was first established, and then the effects of the pouring temperature and inclined slope angle on the microstructures of A380 aluminum alloy (ISOAlSi8Cu3Fe) were studied. Optimum parameters for thixoforming experiments were selected, and it was found that the microstructure produced by the inclined plate depended on its angle and the pouring temperature.


Metals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 707 ◽  
Author(s):  
Chuan-Lu Li ◽  
Feng Qiu ◽  
Fang Chang ◽  
Xu-Min Zhao ◽  
Run Geng ◽  
...  

Simultaneously improving the strength, toughness, and ductility of cast steels has always been a difficult problem for researchers. Biphase TiCx-TiB2 nanoparticle-reinforced cast steels are prepared by adding in situ nanosized biphase TiCx-TiB2/Al master alloy during the casting process. The experimental results show that a series of significant changes take place in the microstructure of the steel: the ferrite-pearlite structure of the as-cast steels and the bainite structure of the steels after heat treatment are refined, the grain size is reduced, and the content of nanoparticles is increased. Promotion of nucleation and inhibition of dendrite growth by biphase TiCx-TiB2 nanoparticles leads to a refinement of the microstructure. The fine microstructure with evenly dispersed nanoparticles offers better properties [yield strength (1246 MPa), tensile strength (1469 MPa), fracture strain (9.4%), impact toughness (20.3 J/cm2) and hardness (41 HRC)] for the steel with 0.018 wt.% biphase TiCx-TiB2 nanoparticles, which are increased by 15.4%, 31.2%, 4.4%, 11.5%, and 7.9% compared with the 40Cr steels. The higher content of nanoparticles provides higher strengths and hardness of the steel but are detrimental to ductility. The improved properties may be attributed to fine grain strengthening and the pinning effect of nanosized carbide on dislocations and grain boundaries. Through this work, it is known that the method of adding trace (0.018 wt.%) biphase TiCx-TiB2 nanoparticles during casting process can simultaneously improve the strength, toughness, as well as ductility of the cast steel.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 972
Author(s):  
Miran Brezocnik ◽  
Uroš Župerl

Štore Steel Ltd. is one of the major flat spring steel producers in Europe. Until 2016 the company used a three-strand continuous casting machine with 6 m radius, when it was replaced by a completely new two-strand continuous caster with 9 m radius. For the comparison of the tensile strength of 41 hypoeutectoid steel grades, we conducted 1847 tensile strength tests during the first period of testing using the old continuous caster, and 713 tensile strength tests during the second period of testing using the new continuous caster. It was found that for 11 steel grades the tensile strength of the rolled material was statistically significantly lower (t-test method) in the period of using the new continuous caster, whereas all other steel grades remained the same. To improve the new continuous casting process, we decided to study the process in more detail using the Multiple Linear Regression method and the Genetic Programming approach based on 713 items of empirical data obtained on the new continuous casting machine. Based on the obtained models of the new continuous casting process, we determined the most influential parameters on the tensile strength of a product. According to the model’s analysis, the secondary cooling at the new continuous caster was improved with the installation of a self-cleaning filter in 2019. After implementing this modification, we performed an additional 794 tensile tests during the third period of testing. It was found out that, after installation of the self-cleaning filter, in 6 steel grades out of 19, the tensile strength in rolled condition improved statistically significantly, whereas all the other steel grades remained the same.


2015 ◽  
Vol 60 (1) ◽  
pp. 239-244 ◽  
Author(s):  
K. Miłkowska-Piszczek ◽  
M. Rywotycki ◽  
J. Falkus ◽  
K. Konopka

Abstract This paper presents the findings of research conducted concerning the determination of thermal boundary conditions for the steel continuous casting process within the primary cooling zone. A cast slab - with dimensions of 1100 mm×220 mm - was analysed, and models described in references were compared with the authors’ model. The presented models were verified on the basis of an industrial database. The research problem was solved with the finite element method using the ProCAST software package.


2007 ◽  
Vol 26-28 ◽  
pp. 551-554
Author(s):  
Sang Kil Lee ◽  
H.S. Lee ◽  
Sung Chul Lim ◽  
T.K. Jung ◽  
K.H. Kim ◽  
...  

Cu-Be alloy (C17200) rod having diameter of 23.5mm was produced by a vacuum continuous casting method at furnace temperature range of from 1240°C to 1260°C with casting speed range of from 35mm/min to 103mm/min. When the furnace temperature was 1240°C and 1250°C, Cu-Be alloy rod without fracture could successfully produced at high casting speed of 103mm/min. However, when the furnace temperature was 1260°C, the breakout occurred at casting speed faster than 78mm/min. Surface roughness (Ra) increased with increasing not only a furnace temperature but also a casting speed.


2011 ◽  
Vol 323 ◽  
pp. 40-45 ◽  
Author(s):  
Shi Lun Zuo ◽  
Jia Xu Wang ◽  
Tai Fu Li

Continuous casting process is a traditional and widely-used technique in producing the cathode of electric lead. In this paer, soft-sensors based on a support vector regression (SVR, in short)model and an artificial neural networks (ANNs, in short)model respectively, were presented for the estimation of the lead slices thickness in the process.Experiments had been performed on the continuous casting machine to obtain the data used for training and testing of the soft-sensors. For the continuous casting process, the soft-sensors proposed here represents a viable and inexpensive on-line sensors.The study results indicate that a good prediction accuracy of the slice thickess can be provided by the soft-sensors, and even a better performance can be achieved by using pre-processing procedures to the input data, it also shows that the SVR model is an attractive alternative to ANNs model for the soft-sensors, when the number of samples is relatively small.


2008 ◽  
Vol 141-143 ◽  
pp. 575-580 ◽  
Author(s):  
Nurşen Saklakoğlu ◽  
Yücel Birol ◽  
Şefika Kasman

Owing to its superior flow and mould-filling capability, a fully globular structure is essential for semisolid processing technologies. The present work was undertaken to identify the cooling slope casting process parameters that, upon heating to the semisolid state, gives the required globular structure for the ETIAL 160 alloy. Of the two pouring temperatures investigated, 605 °C and 615 °C, the lower pouring temperature was found to provide more globular grains surrounded by liquid phases.


2014 ◽  
Vol 1024 ◽  
pp. 247-250 ◽  
Author(s):  
Nguyen Van Thuong ◽  
Zuhailawati Hussain ◽  
Anasyida Abu Seman ◽  
T.D. Huy

Equal channel angular pressing (ECAP) could be used to achieve ultra fine grains in bulk aluminum alloy through severe plastic deformation. Typically a feed material of as-cast aluminum alloys is used with a typical hypoeutectic solidification structure, consisting of primary aluminum dendrites and interdendritic network of lamellar eutectic silicon. On the other hand, semi-solid metal casting provides non-dendritic and globular microstructure which is one of a considerable factor in obtaining homogenous microstructure after ECAP. This work is an attempt to produce aluminum alloy with globular microstructure using cooling slope semi-solid casting process which is believed suitable as a feedstock for ECAP. The aim of this work described in this paper was to understand of microstructural evolution of aluminum structure during cooling slope casting process. Two experiments were carried out. A sample was casted via a cooling slope into a vertical cold mild steel mould at pouring temperature of 640°C. Cooling slope length of 250 mm, slope temperature of room temperature and tilt angle of 60owas applied. Another sample was casted directly into a vertical cold mild steel mould at pouring temperature of 640°C. The primary α-Al phases in the sample that casted without cooling slope was mostly in dendritic throughout the section of sample whilst the primary α-Al phases transformed completely into non-dendritic in the sample that was casted via the cooling slope. Therefore, the transformation is believed resulted from the effect of cooling slope


2018 ◽  
Vol 3 (1) ◽  
pp. 322
Author(s):  
Bladimiro Hernán Navas Olmedo ◽  
Hernán Alberto Navas Moscoso

The lack of comparative studies about the distribution of the main alloying elements along aluminum billet´s AA 6063 widely use in extrusion companies to produce aluminum profiles, It makes necessary to counterpoise the difference between homogenized billet produced in horizontal continuous casting machine and a billet produced in vertical semi-continuous casting process. Applying spectrometric tests to quantify the weight percent of main alloying elements, brings out its own nature of each production process on every billet. Nevertheless, helped out by a metallographic test reveals in one billet the negative effect of an inadequate process of homogenization after the heat treatment process T5 in the aluminum profiles that holds it back to reach an adequate Webster hardness related to quality assurance. It reflects that is not enough to have a billet with a uniform chemical composition but the importance of an adequate billet´s heat treatment in order to be use in the extrusion process.Keywords: AA 6063, Billet, Comparison, Homogenized


1973 ◽  
Vol 59 (1) ◽  
pp. 72-84 ◽  
Author(s):  
Kichinosuke MATSUNAGA ◽  
Chikakazu NAMIKI ◽  
Taiji ARAKI

Sign in / Sign up

Export Citation Format

Share Document