Microstructural Evolution and Solidification Behavior of Functionally Graded In Situ Al–Cr Composites During Centrifugal Casting

Author(s):  
Maryam Yousefi ◽  
Hamid Doostmohammadi
2015 ◽  
Vol 830-831 ◽  
pp. 485-488
Author(s):  
A.G. Arsha ◽  
E. Jayakumar ◽  
T.P.D. Rajan ◽  
Ballembettu Chandrasekhar Pai

A390 functionally graded material (FGM) pistons were fabricated by centrifugal casting, where the silicon particles were segregated in the head portion of the pistons by appropriate design and their density differences. Centrifugal casting offers casting of cylindrical structures with gradation in its properties. In centrifugally cast A390, a suitable die design can lead to the formation of hard primary Si particles gradually distributed towards the head region producing a particle rich zone, transition zone and matrix rich zone. Microstructure and chemical composition analysis confirms the composition gradation. Hardness and wear test results revealed that the gradation positively helps to improve the desired properties with the presence of in-situ primary silicon reinforcements.


2001 ◽  
Vol 702 ◽  
Author(s):  
Yoshihiro Oya-Seimiya ◽  
Tetsumori Shinoda ◽  
Yoshimi Watanabe

ABSTRACTThe fabricating conditions for the in-situ Al-Si base composite by the centrifugal casting method (CCM) have been examined. The crystallized Si particles with a lower density distribute in a gradient fashion as densely on the inner and thinly on the outer side of the wall of the cylindrical CCM-composite. Synthetically, the 25 mol% Si composite is recommended for the application like the engine liner.


2012 ◽  
Vol 710 ◽  
pp. 395-400 ◽  
Author(s):  
S. Raghunandan ◽  
Jasim Akber Hyder ◽  
T.P.D. Rajan ◽  
K. Narayan Prabhu ◽  
B.C. Pai

In the present investigation, FGMs of mono-dispersed in-situ primary Si and their hybrids with Mg2Si reinforcements have been fabricated by the centrifugal casting process using 390 commercial Al alloy. Hard primary silicon particles are formed during the solidification of the 390 alloy and Mg2Si reinforcements are formed by the addition of varying amount of magnesium into the A390 aluminium alloy. Owing to the difference in density both primary silicon and Mg2Si gets segregated towards the inner periphery during centrifugal casting. The size of the Mg2Siin-situreinforcement phase is relatively smaller and is distributed in the edges of primary silicon particles and also individually in the matrix. Thein-situMg2Si and primary silicon can significantly increase the hardness and strength of the inner periphery of the casting. Higher Mg contents have been observed to introduce significant porosity leading to poor castings. Addition of phosphorous to the melt has led to the modification and refinement of primary Si morphology and also helped in the reduction of shrinkage porosity. Maximum hardness of 167 BHN is observed towards the inner periphery of the 390Al-2.5%Mg added in-situ composite.


Materialia ◽  
2021 ◽  
Vol 15 ◽  
pp. 100993
Author(s):  
N. Armstrong ◽  
P.A. Lynch ◽  
P. Cizek ◽  
S.R. Kada ◽  
S. Slater ◽  
...  

Author(s):  
Williams S. Ebhota ◽  
Akhil S. Karun ◽  
Freddie L. Inambao

The study investigates the application of centrifugal casting process in the production of a complex shape component, Pelton turbine bucket. The bucket materials examined were functionally graded aluminium A356 alloy and A356-10%SiCp composite. A permanent mould for the casting of the bucket was designed with a Solidworks software and fabricated by the combination of CNC machining and welding. Oil hardening non-shrinking die steel (OHNS) was chosen for the mould material. The OHNS was heat treated and a hardness of 432 BHN was obtained. The mould was put into use, the buckets of A356 Alloy and A356-10%SiCp composite were cast, cut and machined into specimens. Some of the specimens were given T6 heat treatment and the specimens were prepared according to the designed investigations. The micrographs of A356-10%SiCp composite shows more concentration of SiCp particles at the inner periphery of the bucket. The maximum hardness of As-Cast A356 and A356-10%SiCp composite were 60 BRN and 95BRN respectively, recorded at the inner periphery of the bucket. And these values appreciated to 98BRN and 122BRN for A356 alloy and A356-10%SiCp composite respectively after heat treatment. The prediction curves of the ultimate tensile stress and yield tensile stress show the same trend as the hardness curves.


Sign in / Sign up

Export Citation Format

Share Document