Sea-ice variability in the subarctic North Pacific and adjacent Bering Sea during the past 25 ka: new insights from IP25 and Uk′37 proxy records

arktos ◽  
2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Marie Méheust ◽  
Ruediger Stein ◽  
Kirsten Fahl ◽  
Rainer Gersonde
2015 ◽  
Vol 36 (2) ◽  
pp. 101-111 ◽  
Author(s):  
Marie Méheust ◽  
Ruediger Stein ◽  
Kirsten Fahl ◽  
Lars Max ◽  
Jan-Rainer Riethdorf

2021 ◽  
Vol 9 ◽  
Author(s):  
Hao Fu ◽  
Ruifen Zhan ◽  
Zhiwei Wu ◽  
Yuqing Wang ◽  
Jiuwei Zhao

Although many studies have revealed that Arctic sea ice may impose a great impact on the global climate system, including the tropical cyclone (TC) genesis frequency over the western North Pacific (WNP), it is unknown whether the Arctic sea ice could have any significant effects on other aspects of TCs; and if so, what are the involved physical mechanisms. This study investigates the impact of spring (April-May) sea ice concentration (SIC) in the Bering Sea on interannual variability of TC activity in terms of the accumulated cyclone energy (ACE) over the WNP in the TC season (June-September) during 1981–2018. A statistical analysis indicates that the spring SIC in the Bering Sea is negatively correlated with the TC season ACE over the WNP. Further analyses demonstrate that the reduction of the spring SIC can lead to the westward shift and intensification of the Aleutian low, which strengthens the southward cold-air intrusion, increases low clouds, and reduces surface shortwave radiation flux, leading to cold sea surface temperature (SST) anomaly in the Japan Sea and its adjacent regions. This local cloud-radiation-SST feedback induces the persistent increasing cooling in SST (and also the atmosphere above) in the Japan Sea through the TC season. This leads to a strengthening and southward shift of the subtropical westerly jet (SWJ) over the East Asia, followed by an anomalous upper-level anticyclone, low-level cyclonic circulation anomalies, increased convective available potential energy, and reduced vertical wind shear over the tropical WNP. These all are favorable for the increased ACE over the WNP. The opposite is true for the excessive spring SIC. The finding not only has an important implication for seasonal TC forecasts but also suggests a strengthened future TC activity potentially resulting from the rapid decline of Arctic sea ice.


2017 ◽  
Vol 13 (4) ◽  
pp. 411-420 ◽  
Author(s):  
François Lapointe ◽  
Pierre Francus ◽  
Scott F. Lamoureux ◽  
Mathias Vuille ◽  
Jean-Philippe Jenny ◽  
...  

Abstract. Understanding how internal climate variability influences arctic regions is required to better forecast future global climate variations. This paper investigates an annually-laminated (varved) record from the western Canadian Arctic and finds that the varves are negatively correlated with both the instrumental Pacific Decadal Oscillation (PDO) during the past century and also with reconstructed PDO over the past 700 years, suggesting drier Arctic conditions during high-PDO phases, and vice versa. These results are in agreement with known regional teleconnections, whereby the PDO is negatively and positively correlated with summer precipitation and mean sea level pressure respectively. This pattern is also evident during the positive phase of the North Pacific Index (NPI) in autumn. Reduced sea-ice cover during summer–autumn is observed in the region during PDO− (NPI+) and is associated with low-level southerly winds that originate from the northernmost Pacific across the Bering Strait and can reach as far as the western Canadian Arctic. These climate anomalies are associated with the PDO− (NPI+) phase and are key factors in enhancing evaporation and subsequent precipitation in this region of the Arctic. Collectively, the sedimentary evidence suggests that North Pacific climate variability has been a persistent regulator of the regional climate in the western Canadian Arctic. Since projected sea-ice loss will contribute to enhanced future warming in the Arctic, future negative phases of the PDO (or NPI+) will likely act to amplify this positive feedback.


2012 ◽  
Vol 26 (2) ◽  
pp. n/a-n/a ◽  
Author(s):  
Rachel Wisniewski Jakuba ◽  
Mak A. Saito ◽  
James W. Moffett ◽  
Yan Xu

Sign in / Sign up

Export Citation Format

Share Document