Three-dimensional electric field calculations for wire chamber using element refinement method in ANSYS

2018 ◽  
Vol 29 (12) ◽  
Author(s):  
Yao-Feng Zhang ◽  
J. Barney ◽  
M. B. Tsang ◽  
Chun-Lei Zhang
1997 ◽  
Vol 473 ◽  
Author(s):  
Heng-Chih Lin ◽  
Edwin C. Kan ◽  
Toshiaki Yamanaka ◽  
Simon J. Fang ◽  
Kwame N. Eason ◽  
...  

ABSTRACTFor future CMOS GSI technology, Si/SiO2 interface micro-roughness becomes a non-negligible problem. Interface roughness causes fluctuations of the surface normal electric field, which, in turn, change the gate oxide Fowler-Nordheim tunneling behavior. In this research, we used a simple two-spheres model and a three-dimensional Laplace solver to simulate the electric field and the tunneling current in the oxide region. Our results show that both quantities are strong functions of roughness spatial wavelength, associated amplitude, and oxide thickness. We found that RMS roughness itself cannot fully characterize surface roughness and that roughness has a larger effect for thicker oxide in terms of surface electric field and tunneling behavior.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1622
Author(s):  
Wipawee Tepnatim ◽  
Witchuda Daud ◽  
Pitiya Kamonpatana

The microwave oven has become a standard appliance to reheat or cook meals in households and convenience stores. However, the main problem of microwave heating is the non-uniform temperature distribution, which may affect food quality and health safety. A three-dimensional mathematical model was developed to simulate the temperature distribution of four ready-to-eat sausages in a plastic package in a stationary versus a rotating microwave oven, and the model was validated experimentally. COMSOL software was applied to predict sausage temperatures at different orientations for the stationary microwave model, whereas COMSOL and COMSOL in combination with MATLAB software were used for a rotating microwave model. A sausage orientation at 135° with the waveguide was similar to that using the rotating microwave model regarding uniform thermal and electric field distributions. Both rotating models provided good agreement between the predicted and actual values and had greater precision than the stationary model. In addition, the computational time using COMSOL in combination with MATLAB was reduced by 60% compared to COMSOL alone. Consequently, the models could assist food producers and associations in designing packaging materials to prevent leakage of the packaging compound, developing new products and applications to improve product heating uniformity, and reducing the cost and time of the research and development stage.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Edward T. Dougherty ◽  
James C. Turner ◽  
Frank Vogel

Transcranial direct current stimulation (tDCS) continues to demonstrate success as a medical intervention for neurodegenerative diseases, psychological conditions, and traumatic brain injury recovery. One aspect of tDCS still not fully comprehended is the influence of the tDCS electric field on neural functionality. To address this issue, we present a mathematical, multiscale model that couples tDCS administration to neuron electrodynamics. We demonstrate the model’s validity and medical applicability with computational simulations using an idealized two-dimensional domain and then an MRI-derived, three-dimensional human head geometry possessing inhomogeneous and anisotropic tissue conductivities. We exemplify the capabilities of these simulations with real-world tDCS electrode configurations and treatment parameters and compare the model’s predictions to those attained from medical research studies. The model is implemented using efficient numerical strategies and solution techniques to allow the use of fine computational grids needed by the medical community.


2013 ◽  
Vol 845 ◽  
pp. 372-377 ◽  
Author(s):  
Nabipour Afrouzi Hadi ◽  
Zulkurnain Abdul-Malek ◽  
Saeed Vahabi Mashak ◽  
A.R. Naderipour

Cross-linked polyethylene is widely used as electrical insulation because of its excellent electrical properties such as low dielectric constant, low dielectric loss and also due to its excellent chemical resistance and mechanical flexibility. Nevertheless, the most important reason for failure of high voltage equipment is due to its insulation failure. The electrical properties of an insulator are affected by the presence of cavities within the insulating material, in particular with regard to the electric field and potential distributions. In this paper, the electric field and potential distributions in high voltage cables containing single and multiple cavities are studied. Three different insulating media, namely PE, XLPE, and PVC was modeled. COMSOL software which utilises the finite element method (FEM) was used to carry out the simulation. An 11kV underground cable was modeled in 3D for better observation and analyses of the generated voltage and field distributions. The results show that the electric field is affected by the presence of cavities in the insulation. Furthermore, the field strength and uniformity are also affected by whether cavities are radially or axially aligned, as well as the type of the insulating solid. The effect of insulator type due the presence of cavities was seen most prevalent in PVC followed by PE and then XLPE.


Author(s):  
Seiji Nomura ◽  
Kosaku Kurata ◽  
Hiroshi Takamatsu

The irreversible electroporation (IRE) is a novel method to ablate abnormal cells by applying a high voltage between two electrodes that are stuck into abnormal tissues. One of the advantages of the IRE is that the extracellular matrix (ECM) may be kept intact, which is favorable for healing. For a successful IRE, it is therefore important to avoid thermal damage of ECM resulted from the Joule heating within the tissue. A three-dimensional (3-D) analysis was conducted in this study to predict temperature rise during the IRE. The equation of electric field and the heat conduction equation were solved numerically by a finite element method. It was clarified that the highest temperature rise occurred at the base of electrodes adjacent to the insulated surface. The result was significantly different from a two-dimensional (2-D) analysis due to end effects, suggesting that the 3-D analysis is required to determine the optimal condition.


Sign in / Sign up

Export Citation Format

Share Document