A0.8Er0.2TiNbO6 (A = Ce, Pr, Nd, and Sm) functional ceramics

Author(s):  
Fergy John ◽  
Sam Solomon
Keyword(s):  
2007 ◽  
Vol 336-338 ◽  
pp. 793-795 ◽  
Author(s):  
Hui Ming Ji ◽  
Xiao Chuan Liu ◽  
Ying Lv ◽  
Cui Xia Li ◽  
Xiao Dong Chen

The electrical properties and microstructures of SrTiO3 based voltage-sensing and dielectric dual-functional ceramics with nanometer donor and acceptor additives were studied. The La2O3 nanopowders and MnO-SiO2-Al2O3 (or CuO-SiO2-Al2O3) nano-composite powders were incorporated into SrTiO3 as donor, acceptor and liquid-phase sintering aids. Then semiconducting SrTiO3-based ceramics were sintered at 1360-1440oC for 2 h in a reducing atmosphere. The effects of the nanometer donor and acceptor additives and the sintering temperature on the electrical properties and microstructures of materials were discussed. The results showed that SrTiO3-based varistor ceramics with 1.1 mol% La2O3 and 0.1 mol% MnO nano-additives sintered at 1360-1420oC in graphite and N2 reducing atmosphere have excellent voltage-sensing and dielectric characteristics. The varistor voltage ranges from 2.3 to 5.3 V/mm, the nonlinear coefficient from 3.0 to 3.8, and the dielectric constant from 215,600 to 413,000.


2021 ◽  
Author(s):  
Kai Liu ◽  
Jiaming Hu ◽  
Yusheng Shi ◽  
Chenyang Zhou ◽  
Yunfei Sun ◽  
...  

Abstract To improve electrical properties of BaTiO3 piezoelectric ceramics fabricated by 3D printing, effects of particle sizes was investigated on rheological and curing properties of ceramic slurries, electrical properties of BaTiO3 fabricated by Digital Light Processing 3D printing method. It was found that the curing ability of ceramic slurries decreased first and then increased with the increase of particle size from 136 nm to 1486 nm, while the viscosity of the slurries kept decreasing. When the particle size in a range of submicron, the grain size of sintered ceramics decreased from 13.27 μm to 6.84 μm as particle size increasing. Immediately, the relative density, piezoelectric constant, relative permittivity and remanent polarization of sintered ceramics were measured and it turns out to reach 95.32%, 161.4 pC/N, 1512 and 7.59 uC/cm2 respectively while using the BaTiO3 powder with particle sizes of 993 nm. Finally, a cellular structural BaTiO3 ceramics was fabricated by using optimized powder and process parameters and packaged as a piezoelectric sensor, showing a good function of force-electricity conversion. These results demonstrated the feasibility of fabricating high-quality functional ceramics with designed geometry by Digital Light Processing.


Author(s):  
Michael W. Usrey ◽  
Yiping Liu ◽  
Mark Anderson ◽  
Jon Lubbers ◽  
Brady Knowles ◽  
...  

Solar power is a sustainable resource which can reduce the power generated by fossil fuels, lowering greenhouse gas emissions and increasing energy independence. The U.S. Department of Energy’s SunShot Initiative has set goals to increase the efficiency of concentrating solar power (CSP) systems. One SunShot effort to help CSP systems exceed 50% efficiency is to make use of high-temperature heat transfer fluids (HTFs) and thermal energy storage (TES) fluids that can increase the temperature of the power cycle up to 1300°C. Sporian has successfully developed high-temperature operable pressure, temperature, thermal flux, strain, and flow sensors for gas path measurements in high-temperature turbine engines. These sensors are based on a combination of polymer derived ceramic (PDC) sensors, advanced high-temperature packaging, and integrated electronics. The overall objective is the beneficial application of these sensors to CSP systems. Through collaboration with CSP industry stakeholders, Sporian has established a full picture of operational, interface, and usage requirements for trough, tower, and dish CSP architectures. In general, sensors should have accurate measurement, good reliability, reasonable cost, and ease of replacement or repair. Sensors in contact with hot salt HTF and TES fluids will experience temperature cycling on a daily basis, and parts of the system may be drained routinely. Some of the major challenges to high-temperature CSP implementation include molten salt corrosion and flow erosion of the sensors. Potential high-temperature sensor types that have been identified as of interest for CSP HTF/TES applications include temperature, pressure, flow, and level sensors. Candidate solar salts include nitrate, carbonate, and chloride, with different application temperatures ranging from 550°C-900°C. Functional ceramics were soaked for 500 hours in molten nitrate, carbonate, and chloride salts, showing excellent corrosion resistance in chloride salts and good resistance in nitrate salts. The demonstration of functional ceramics in relevant HTFs laid the foundation for full prototype sensor and packaging demonstration. Sporian has developed a packaging approach for ceramic-based sensors in various harsh gaseous environments at temperatures up to 1400°C, but several aspects of that packaging are not compatible with corrosive and electrically conductive HTFs. In addition to consulting published literature, a 300 hour soak test in molten chloride salt allowed the authors to identify suitable structural metals and ceramics. Based on discussions with stakeholders, molten salt corrosion testing and room-temperature water flow testing, suitable for CSP sensor/packaging concepts were identified for future development, and initial prototypes have been built and tested.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 564
Author(s):  
Beate Capraro ◽  
Manuel Heidenreich ◽  
Jörg Töpfer

We have studied the sintering behavior of CT708 LTCC tapes with large CTE of 10.6 ppm/K. This low-k dielectric LTCC material is a quartz-based glass ceramic composite system with partial crystallization of celsian upon firing. The shrinkage, densification and dielectric properties were examined using different heating rates and a sintering temperature of 900 °C. The maximum shrinkage rate is at 836 °C (for a heating rate of 2 K/min) with a sintering density of 95% and a permittivity of ε’ = 5.9 and tan δ = 0.0004 (at 1 GHz). Due to their similar shrinkage and thermal expansion properties, CT708 tapes may be cofired with functional ceramic layers. As an example, we report on cofiring of a multilayer laminate of CT708 and a Sc-substituted hexagonal ferrite for applications as integrated microwave circulator components. This demonstrates the feasibility of cofiring of functional ceramic tapes and tailored LTCC tapes and documents the potential for the realization of complex LTCC multilayer architectures.


2004 ◽  
Author(s):  
◽  
Carla Da Cruz

This dissertation investigates the use of clay as a medium in contemporary sculpture made between 1980 and 2003. This research focuses specifically on discussing the artists' (both sculptors and ceramists) different approaches and attitudes to working with clay, from construction, manipulation, firing and glazing techniques through to their personal aesthetics and ideas. This dissertation examines how and why the contemporary sculptor trained in Fine Art is increasingly using clay as a medium in which to work. In addition, the candidate discusses the work of ceramic artists that have moved away from the constraints of earlier, more traditional, functional ceramics and have sought to push the boundaries of clay usage in terms of size, scale, mass and concept. Chapter One presents a broad historical overview of the use of clay in sculpture. This overview illustrates the depth and breadth of the use of clay in the making of sculpture, spanning the Nineteenth Century to the Twentieth Century, in order to highlight the significant shift in the use of clay in contemporary sculpture. Chapter Two introduces and discusses a number of contemporary sculptors who work in clay in different ways. Section One examines artists using clay and other materials in the creation of installations. These include Antony Gormley and Andy Goldsworthy. Section Two discusses those artists working with clay in large-scale, including Jun Kaneko and Wilma Cruise. The architectural and environmental use of clay materials is discussed in Section Three; this includes artists John Roloff, who works with the kiln as sculpture and Joyce Kohl, who works with adobe assemblages and steel.


Sign in / Sign up

Export Citation Format

Share Document