scholarly journals Heterodyne Standing-Wave Interferometer with Improved Phase Stability

Author(s):  
Ingo Ortlepp ◽  
Jens-Peter Zöllner ◽  
Ivo W. Rangelow ◽  
Eberhard Manske

AbstractThis paper describes a standing-wave interferometer with two laser sources of different wavelengths, diametrically opposed and emitting towards each other. The resulting standing wave has an intensity profile which is moving with a constant velocity, and is directly detected inside the laser beam by two thin and transparent photo sensors. The first sensor is at a fixed position, serving as a phase reference for the second one which is moved along the optical axis, resulting in a frequency shift, proportional to the velocity. The phase difference between both sensors is evaluated for the purpose of interferometric length measurements.

2018 ◽  
Vol 85 (s1) ◽  
pp. s80-s85
Author(s):  
Ingo Ortlepp ◽  
Eberhard Manske ◽  
Jens-Peter Zöllner ◽  
Ivo Rangelow

Abstract This manuscript describes a novel standingwave arrangement with two laser sources of different wavelengths, emitting towards each other. The resulting standing wave has a continuously moving intensity profile, a thin, transparent photo sensor is inserted into. When the sensor is moved along the optical axis a frequency shift, proportional to the velocity, occurs. This frequency shift can be evaluated for the purpose of interferometric length measurements.


2020 ◽  
pp. 3-5
Author(s):  
Y. G. Zakharenko ◽  
N. A. Kononova ◽  
V. L. Fedorin ◽  
Z. V. Fomkina ◽  
K. V. Chekirda

The results of the work to create a complex of high-precision hardware for the unit of length reproduction and transferring carried out at “D. I. Mendeleyev Institute for Metrology (VNIIM)” are represented. This complex will serve as the basis for the further development of the reference base of the Russian Federation in the field of length measurements and will allow reproduction of the unit of length at two wavelengths of 633 nm and 532 nm, as well as measurements of the wavelength of laser sources in vacuum in the range from 500 to 1050 nm.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yi Shu ◽  
Daniel Galles ◽  
Ottman A. Tertuliano ◽  
Brandon A. McWilliams ◽  
Nancy Yang ◽  
...  

AbstractThe study of microstructure evolution in additive manufacturing of metals would be aided by knowing the thermal history. Since temperature measurements beneath the surface are difficult, estimates are obtained from computational thermo-mechanical models calibrated against traces left in the sample revealed after etching, such as the trace of the melt pool boundary. Here we examine the question of how reliable thermal histories computed from a model that reproduces the melt pool trace are. To this end, we perform experiments in which one of two different laser beams moves with constant velocity and power over a substrate of 17-4PH SS or Ti-6Al-4V, with low enough power to avoid generating a keyhole. We find that thermal histories appear to be reliably computed provided that (a) the power density distribution of the laser beam over the substrate is well characterized, and (b) convective heat transport effects are accounted for. Poor control of the laser beam leads to potentially multiple three-dimensional melt pool shapes compatible with the melt pool trace, and therefore to multiple potential thermal histories. Ignoring convective effects leads to results that are inconsistent with experiments, even for the mild melt pools here.


2021 ◽  
Author(s):  
J. Kim ◽  
W. Gillman ◽  
T. John ◽  
S. Adhikari ◽  
D. Wu ◽  
...  

Abstract This paper analyzes the dynamics of unstable azimuthal thermoacoustic modes in a lean premixed combustor. Azimuthal modes can be decomposed into two counter rotating waves where they can either compete and potentially suppress one of them (spinning) or coexist (standing), depending on the operating conditions. This paper describes experimental results of the dynamical behaviors of these two waves. The experimental data were taken at different mass flow rates as well as different azimuthal fuel staging in a multi-nozzle can combustor. It is shown that at a low flow rate with uniform fuel distribution, the two waves have similar amplitudes, giving rise to a standing wave. However, the two amplitudes are slowly oscillating out of phase to each other, and the phase difference between the two waves also shows oscillatory behavior. For an intermediate flow rate, the dynamics show intermittency between standing and spinning waves, indicating that the system is bistable. In addition, the phase difference dramatically shifts when the mode switches between standing and spinning waves. For a high flow rate, the system stabilizes at a spinning wave most of the time. These experimental observations demonstrate that not only the amplitudes of two waves but also the phase difference plays an important role in the dynamics of azimuthal mode. For non-uniform azimuthal fuel staging, the modal dynamics exhibit only an oscillatory standing wave behavior regardless of the mass flow rate. Compared to the uniform fuel staging, however, the pressure magnitude is considerably reduced, which provides a potential strategy to mitigate and/or suppress the instabilities.


Atmosphere ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 550
Author(s):  
Jhonny Villamizar ◽  
Manuel Herreño ◽  
Omar Tíjaro ◽  
Yezid Torres

In atmospheric turbulence, relative humidity has been almost a negligible variable due to its limited effect, compared with temperature and air velocity, among others. For studying the horizontal path, a laser beam was propagated in a laboratory room, and an Optical Turbulence Generator (OTG) was built and placed along the optical axis. Additionally, there was controlled humidity inside the room and measuring of some physical variables inside the OTG device for determining its effects on the laser beam. The experimental results show the measurements of turbulence parameters C n 2 , l o , and σ I 2 from beam centroids fluctuations, where increases in humidity generated stronger turbulence.


2006 ◽  
Vol 32 (2) ◽  
pp. 169 ◽  
Author(s):  
Svetlana Serak ◽  
Nelson Tabiryan ◽  
Boris Zeldovich

1991 ◽  
Author(s):  
William M. Sharp ◽  
G. Rangarajan ◽  
Andrew M. Sessler ◽  
Jonathan S. Wurtele

Sign in / Sign up

Export Citation Format

Share Document