RAP via constraint optimization genetic algorithm

Author(s):  
Sunita Kumari ◽  
Pooja Khurana ◽  
Shakuntla Singla
1997 ◽  
Vol 06 (04) ◽  
pp. 567-585 ◽  
Author(s):  
T. L. Lau ◽  
E. P. K. Tsang

The Processor Configuration Problem (PCP) is a real life Constraint Optimization Problem. The task is to link up a finite set of processors into a network, whilst minimizing the maximum distance between these processors. Since each processor has a limited number of communication channels, a carefully planned layout will help reduce the overhead for message switching. In this paper, we present a Genetic Algorithm (GA) approach to the PCP. Our technique uses a mutation-based GA, a function that produces schemata by analyzing previous solutions, and an efficient data representation. Our approach has been shown to out-perform other published techniques in this problem.


1994 ◽  
Vol 4 (9) ◽  
pp. 1281-1285 ◽  
Author(s):  
P. Sutton ◽  
D. L. Hunter ◽  
N. Jan

Author(s):  
J. Magelin Mary ◽  
Chitra K. ◽  
Y. Arockia Suganthi

Image processing technique in general, involves the application of signal processing on the input image for isolating the individual color plane of an image. It plays an important role in the image analysis and computer version. This paper compares the efficiency of two approaches in the area of finding breast cancer in medical image processing. The fundamental target is to apply an image mining in the area of medical image handling utilizing grouping guideline created by genetic algorithm. The parameter using extracted border, the border pixels are considered as population strings to genetic algorithm and Ant Colony Optimization, to find out the optimum value from the border pixels. We likewise look at cost of ACO and GA also, endeavors to discover which one gives the better solution to identify an affected area in medical image based on computational time.


Sign in / Sign up

Export Citation Format

Share Document