scholarly journals Manifolds of classical probability distributions and quantum density operators in infinite dimensions

2019 ◽  
Vol 2 (2) ◽  
pp. 231-271 ◽  
Author(s):  
F. M. Ciaglia ◽  
A. Ibort ◽  
J. Jost ◽  
G. Marmo

Abstract The manifold structure of subsets of classical probability distributions and quantum density operators in infinite dimensions is investigated in the context of $$C^{*}$$C∗-algebras and actions of Banach-Lie groups. Specificaly, classical probability distributions and quantum density operators may be both described as states (in the functional analytic sense) on a given $$C^{*}$$C∗-algebra $$\mathscr {A}$$A which is Abelian for Classical states, and non-Abelian for Quantum states. In this contribution, the space of states $$\mathscr {S}$$S of a possibly infinite-dimensional, unital $$C^{*}$$C∗-algebra $$\mathscr {A}$$A is partitioned into the disjoint union of the orbits of an action of the group $$\mathscr {G}$$G of invertible elements of $$\mathscr {A}$$A. Then, we prove that the orbits through density operators on an infinite-dimensional, separable Hilbert space $$\mathcal {H}$$H are smooth, homogeneous Banach manifolds of $$\mathscr {G}=\mathcal {GL}(\mathcal {H})$$G=GL(H), and, when $$\mathscr {A}$$A admits a faithful tracial state $$\tau $$τ like it happens in the Classical case when we consider probability distributions with full support, we prove that the orbit through $$\tau $$τ is a smooth, homogeneous Banach manifold for $$\mathscr {G}$$G.

1976 ◽  
Vol 79 (1) ◽  
pp. 117-128 ◽  
Author(s):  
David Chillingworth ◽  
Peter Stefan

One of the key results in the work of the second author ((7), (8)) on integrability of systems of vectorfields is the theorem which relates integrability of a distribution to the concept of homogeneity. In this paper, we show that the homogeneity theorem also applies in an infinite-dimensional context, and this allows us to derive infinite-dimensional versions of several further results in (7) and (8), formulated in terms of distributions. In particular, we are able to express necessary and sufficient conditions for homogeneity in terms of Lie brackets (Theorems 3 and 4) and to characterize integrable real-analytic distributions (Theorem 5). As a corollary to our Theorem 2, we recover the standard Frobenius theorem on the integrability of regular distributions. We also discuss briefly a basic problem which arises in infinite dimensions when we view an integral manifold of an integrable distribution as part of a singular foliation.


Stats ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 184-204
Author(s):  
Carlos Barrera-Causil ◽  
Juan Carlos Correa ◽  
Andrew Zamecnik ◽  
Francisco Torres-Avilés ◽  
Fernando Marmolejo-Ramos

Expert knowledge elicitation (EKE) aims at obtaining individual representations of experts’ beliefs and render them in the form of probability distributions or functions. In many cases the elicited distributions differ and the challenge in Bayesian inference is then to find ways to reconcile discrepant elicited prior distributions. This paper proposes the parallel analysis of clusters of prior distributions through a hierarchical method for clustering distributions and that can be readily extended to functional data. The proposed method consists of (i) transforming the infinite-dimensional problem into a finite-dimensional one, (ii) using the Hellinger distance to compute the distances between curves and thus (iii) obtaining a hierarchical clustering structure. In a simulation study the proposed method was compared to k-means and agglomerative nesting algorithms and the results showed that the proposed method outperformed those algorithms. Finally, the proposed method is illustrated through an EKE experiment and other functional data sets.


2019 ◽  
Vol 374 (2) ◽  
pp. 823-871 ◽  
Author(s):  
Simon Becker ◽  
Nilanjana Datta

Abstract By extending the concept of energy-constrained diamond norms, we obtain continuity bounds on the dynamics of both closed and open quantum systems in infinite dimensions, which are stronger than previously known bounds. We extensively discuss applications of our theory to quantum speed limits, attenuator and amplifier channels, the quantum Boltzmann equation, and quantum Brownian motion. Next, we obtain explicit log-Lipschitz continuity bounds for entropies of infinite-dimensional quantum systems, and classical capacities of infinite-dimensional quantum channels under energy-constraints. These bounds are determined by the high energy spectrum of the underlying Hamiltonian and can be evaluated using Weyl’s law.


2003 ◽  
Vol 3 (4) ◽  
pp. 281-306
Author(s):  
M. Keyl ◽  
D. Schlingemann ◽  
R.F. Werner

For states in infinite dimensional Hilbert spaces entanglement quantities like the entanglement of distillation can become infinite. This leads naturally to the question, whether one system in such an infinitely entangled state can serve as a resource for tasks like the teleportation of arbitrarily many qubits. We show that appropriate states cannot be obtained by density operators in an infinite dimensional Hilbert space. However, using techniques for the description of infinitely many degrees of freedom from field theory and statistical mechanics, such states can nevertheless be constructed rigorously. We explore two related possibilities, namely an extended notion of algebras of observables, and the use of singular states on the algebra of bounded operators. As applications we construct the essentially unique infinite analogue of maximally entangled states, and the singular state used heuristically in the fundamental paper of Einstein, Rosen and Podolsky.


2012 ◽  
Vol 62 (6) ◽  
Author(s):  
Hans Keller ◽  
Herminia Ochsenius

AbstractOrthomodular Hilbertian spaces are infinite-dimensional inner product spaces (E, 〈·, ·〉) with the rare property that to every orthogonally closed subspace U ⊆ E there is an orthogonal projection from E onto U. These spaces, discovered about 30 years ago, are constructed over certain non-Archimedeanly valued, complete fields and are endowed with a non-Archimedean norm derived from the inner product. In a previous work [KELLER, H. A.—OCHSENIUS, H.: On the Clifford algebra of orthomodular spaces over Krull valued fields. In: Contemp. Math. 508, Amer. Math. Soc., Providence, RI, 2010, pp. 73–87] we described the construction of a new object, called the norm Clifford algebra C̃(E) associated to E. It can be considered a counterpart of the well-established Clifford algebra of a finite dimensional quadratic space. In contrast to the classical case, C̃(E) allows to represent infinite products of reflections by inner automorphisms. It is a significant step towards a better understanding of the group of isometries, which in infinite dimension is complex and hard to grasp.In the present paper we are concerned with the inner structure of these new algebras. We first give a canonical representation of the elements, and we prove that C̃ is always central. Then we focus on an outstanding special case in which C̃ is shown to be a division ring. Moreover, in that special case we completely describe the ideals of the corresponding valuation ring $$\mathcal{A}$$. It turns out, rather unexpectedly, that every left-ideal and every right-ideal of $$\mathcal{A}$$ is in fact bilateral.


2021 ◽  
Vol 34 (2) ◽  
pp. 141-173
Author(s):  
Hirofumi Osada

We explain the general theories involved in solving an infinite-dimensional stochastic differential equation (ISDE) for interacting Brownian motions in infinite dimensions related to random matrices. Typical examples are the stochastic dynamics of infinite particle systems with logarithmic interaction potentials such as the sine, Airy, Bessel, and also for the Ginibre interacting Brownian motions. The first three are infinite-dimensional stochastic dynamics in one-dimensional space related to random matrices called Gaussian ensembles. They are the stationary distributions of interacting Brownian motions and given by the limit point processes of the distributions of eigenvalues of these random matrices. The sine, Airy, and Bessel point processes and interacting Brownian motions are thought to be geometrically and dynamically universal as the limits of bulk, soft edge, and hard edge scaling. The Ginibre point process is a rotation- and translation-invariant point process on R 2 \mathbb {R}^2 , and an equilibrium state of the Ginibre interacting Brownian motions. It is the bulk limit of the distributions of eigenvalues of non-Hermitian Gaussian random matrices. When the interacting Brownian motions constitute a one-dimensional system interacting with each other through the logarithmic potential with inverse temperature β = 2 \beta = 2 , an algebraic construction is known in which the stochastic dynamics are defined by the space-time correlation function. The approach based on the stochastic analysis (called the analytic approach) can be applied to an extremely wide class. If we apply the analytic approach to this system, we see that these two constructions give the same stochastic dynamics. From the algebraic construction, despite being an infinite interacting particle system, it is possible to represent and calculate various quantities such as moments by the correlation functions. We can thus obtain quantitative information. From the analytic construction, it is possible to represent the dynamics as a solution of an ISDE. We can obtain qualitative information such as semi-martingale properties, continuity, and non-collision properties of each particle, and the strong Markov property of the infinite particle system as a whole. Ginibre interacting Brownian motions constitute a two-dimensional infinite particle system related to non-Hermitian Gaussian random matrices. It has a logarithmic interaction potential with β = 2 \beta = 2 , but no algebraic configurations are known.The present result is the only construction.


2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
P. Rueda ◽  
E. A. Sánchez Pérez

We show a Dvoretzky-Rogers type theorem for the adapted version of theq-summing operators to the topology of the convergence of the vector valued integrals on Banach function spaces. In the pursuit of this objective we prove that the mere summability of the identity map does not guarantee that the space has to be finite dimensional, contrary to the classical case. Some local compactness assumptions on the unit balls are required. Our results open the door to new convergence theorems and tools regarding summability of series of integrable functions and approximation in function spaces, since we may find infinite dimensional spaces in which convergence of the integrals, our vector valued version of convergence in the weak topology, is equivalent to the convergence with respect to the norm. Examples and applications are also given.


Author(s):  
Boualem Djehiche ◽  
Hiba Nassar

AbstractWe propose a functional version of the Hodrick–Prescott filter for functional data which take values in an infinite-dimensional separable Hilbert space. We further characterize the associated optimal smoothing operator when the associated linear operator is compact and the underlying distribution of the data is Gaussian.


Symmetry ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1099 ◽  
Author(s):  
Peter Adam ◽  
Vladimir A. Andreev ◽  
Margarita A. Man’ko ◽  
Vladimir I. Man’ko ◽  
Matyas Mechler

In view of the probabilistic quantizer–dequantizer operators introduced, the qubit states (spin-1/2 particle states, two-level atom states) realizing the irreducible representation of the S U ( 2 ) symmetry group are identified with probability distributions (including the conditional ones) of classical-like dichotomic random variables. The dichotomic random variables are spin-1/2 particle projections m = ± 1 / 2 onto three perpendicular directions in the space. The invertible maps of qubit density operators onto fair probability distributions are constructed. In the suggested probability representation of quantum states, the Schrödinger and von Neumann equations for the state vectors and density operators are presented in explicit forms of the linear classical-like kinetic equations for the probability distributions of random variables. The star-product and quantizer–dequantizer formalisms are used to study the qubit properties; such formalisms are discussed for photon tomographic probability distribution and its correspondence to the Heisenberg–Weyl symmetry properties.


Sign in / Sign up

Export Citation Format

Share Document