Microstructure evolution and mechanical properties of PESR 55Cr17Mo1VN plastic die steel during quenching and tempering treatment

Author(s):  
Cong-peng Kang ◽  
Fu-bin Liu ◽  
Huai-bei Zheng ◽  
Hua-bing Li ◽  
Zhou-hua Jiang ◽  
...  
2016 ◽  
Vol 43 (2) ◽  
pp. 0203003 ◽  
Author(s):  
陈洪宇 Chen Hongyu ◽  
顾冬冬 Gu Dongdong ◽  
顾荣海 Gu Ronghai ◽  
陈文华 Chen Wenhua ◽  
戴冬华 Dai Donghua

2018 ◽  
Vol 115 (4) ◽  
pp. 407 ◽  
Author(s):  
Annika Eggbauer Vieweg ◽  
Gerald Ressel ◽  
Peter Raninger ◽  
Petri Prevedel ◽  
Stefan Marsoner ◽  
...  

Induction heating processes are of rising interest within the heat treating industry. Using inductive tempering, a lot of production time can be saved compared to a conventional tempering treatment. However, it is not completely understood how fast inductive processes influence the quenched and tempered microstructure and the corresponding mechanical properties. The aim of this work is to highlight differences between inductive and conventional tempering processes and to suggest a possible processing route which results in optimized microstructures, as well as desirable mechanical properties. Therefore, the present work evaluates the influencing factors of high heating rates to tempering temperatures on the microstructure as well as hardness and Charpy impact energy. To this end, after quenching a 50CrMo4 steel three different induction tempering processes are carried out and the resulting properties are subsequently compared to a conventional tempering process. The results indicate that notch impact energy raises with increasing heating rates to tempering when realizing the same hardness of the samples. The positive effect of high heating rate on toughness is traced back to smaller carbide sizes, as well as smaller carbide spacing and more uniform carbide distribution over the sample.


2018 ◽  
Vol 18 (1) ◽  
pp. 125-135
Author(s):  
Sattar H A Alfatlawi

One of ways to improve properties of materials without changing the product shape toobtain the desired engineering applications is heating and cooling under effect of controlledsequence of heat treatment. The main aim of this study was to investigate the effect ofheating and cooling on the surface roughness, microstructure and some selected propertiessuch as the hardness and impact strength of Medium Carbon Steel which treated at differenttypes of heat treatment processes. Heat treatment achieved in this work was respectively,heating, quenching and tempering. The specimens were heated to 850°C and left for 45minutes inside the furnace as a holding time at that temperature, then quenching process wasperformed in four types of quenching media (still air, cold water (2°C), oil and polymersolution), respectively. Thereafter, the samples were tempered at 200°C, 400°C, and 600°Cwith one hour as a soaking time for each temperature, then were all cooled by still air. Whenthe heat treatment process was completed, the surface roughness, hardness, impact strengthand microstructure tests were performed. The results showed a change and clearimprovement of surface roughness, mechanical properties and microstructure afterquenching was achieved, as well as the change that took place due to the increasingtoughness and ductility by reducing of brittleness of samples.


Alloy Digest ◽  
1987 ◽  
Vol 36 (7) ◽  

Abstract AL TECH POTOMAC A has well-balanced strength and toughness which make it especially suitable for a wide variety of hot-die steel applications, including those involving severe coolants. Its outstanding mechanical properties make it useful for many non-tooling requirements such as aerospace components. For more specialized needs, the manufacturer offers special melting processes that enhance this steel's fatigue properties and transverse tensile ductility. This datasheet provides information on composition, physical properties, microstructure, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance as well as forming, heat treating, and machining. Filing Code: TS-478. Producer or source: AL Tech Specialty Steel Corporation.


Sign in / Sign up

Export Citation Format

Share Document