Design and Implementation of Vibration Energy Harvester Based on MSMA Cantilever Beam

2020 ◽  
Vol 21 (4) ◽  
pp. 399-405
Author(s):  
Yang Jing ◽  
Wang Luping ◽  
Xu Jin
Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 772
Author(s):  
Xianming He ◽  
Dongxiao Li ◽  
Hong Zhou ◽  
Xindan Hui ◽  
Xiaojing Mu

The piezoelectric vibration energy harvester (PVEH) based on the variable cross-section cantilever beam (VCSCB) structure has the advantages of uniform axial strain distribution and high output power density, so it has become a research hotspot of the PVEH. However, its electromechanical model needs to be further studied. In this paper, the bidirectional coupled distributed parameter electromechanical model of the MEMS VCSCB based PVEH is constructed, analytically solved, and verified, which laid an important theoretical foundation for structural design and optimization, performance improvement, and output prediction of the PVEH. Based on the constructed model, the output performances of five kinds of VCSCB based PVEHs with different cross-sectional shapes were compared and analyzed. The results show that the PVEH with the concave quadratic beam shape has the best output due to the uniform surface stress distribution. Additionally, the influence of the main structural parameters of the MEMS trapezoidal cantilever beam (TCB) based PVEH on the output performance of the device is theoretically analyzed. Finally, a prototype of the Aluminum Nitride (AlN) TCB based PVEH is designed and developed. The peak open-circuit voltage and normalized power density of the device can reach 5.64 V and 742 μW/cm3/g2, which is in good agreement with the theoretical model value. The prototype has wide application prospects in the power supply of the wireless sensor network node such as the structural health monitoring system and the Internet of Things.


2014 ◽  
Vol 592-594 ◽  
pp. 2297-2302
Author(s):  
Prasanta Kumar Samal ◽  
Pramod Kumar Malik ◽  
Avinash Babu ◽  
G.C. Shanthakumar

In the immediate surroundings of our daily life, we can find a lot of places where the energy in the form of vibration is being wasted. Therefore, we have enormous opportunities to utilize the same. Piezoelectric character of matter enables us to convert this mechanical vibration energy into electrical energy which can be stored and used to power other device, instead of being wasted. This work is done to realize both actuator and sensor in a cantilever beam based on piezoelectricity. The sensor part is called vibration energy harvester. The numerical analyses were performed for the cantilever beam using the commercial package ANSYS and MATLAB. The cantilever beam is realized by taking a plate and fixing its one end between two massive plates. Two PZT patches were glued to the beam on its two faces. Experiments were performed using data acquisition system (DAQ) and LABVIEW software for actuating and sensing the vibration of the cantilever beam.


Author(s):  
Bing Chen ◽  
Xiaolei Tang

In the piezoelectric vibration energy harvester, permanent magnets are often used to generate nonlinear applied magnetics force to improve the energy utilization rate of the system, the modeling analysis and accurate calculation of the force between magnets in the system is a difficult problem in the study of nonlinear bistable vibration energy harvesting. During the deformation of the cantilever beam, the direct force of the permanent magnet block can be divided into horizontal and vertical component forces. In most existing literatures analyzing such problems, the magnetizing current method magnetic force calculation model of double-stabilized electric beam mainly considers the influence of vertical magnetic force on the system of cantilever beam, and it is considered that the horizontal component of magnetic force has little influence on the vibration response of cantilever beam, but there is no detailed proof and elaboration of this problem. In this paper, the magnetic force, the effect of magnetic force on natural frequency and magnetic potential energy are calculated and simulated from three aspects. Through the comparison of results, it is proved that the effect of the horizontal magnetic force on the whole nonlinear piezoelectric beam vibration energy harvester can be ignored.


Micromachines ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 80 ◽  
Author(s):  
Ge Shi ◽  
Junfu Chen ◽  
Yansheng Peng ◽  
Mang Shi ◽  
Huakang Xia ◽  
...  

Harvesting vibration energy to power wearable devices has become a hot research topic, while the output power and conversion efficiency of a vibration energy harvester with a single electromechanical conversion mechanism is low and the working frequency band and load range are narrow. In this paper, a new structure of piezoelectric electromagnetic coupling up-conversion multi-directional vibration energy harvester is proposed. Four piezoelectric electromagnetic coupling cantilever beams are installed on the axis of the base along the circumferential direction. Piezoelectric plates are set on the surface of each cantilever beam to harvest energy. The permanent magnet on the beam is placed on the free end of the cantilever beam as a mass block. Four coils for collecting energy are arranged on the base under the permanent magnets on the cantilever beams. A bearing is installed on the central shaft of the base and a rotating mass block is arranged on the outer ring of the bearing. Four permanent magnets are arranged on the rotating mass block and their positions correspond to the permanent magnets on the cantilever beams. The piezoelectric cantilever is induced to vibrate at its natural frequency by the interaction between the magnet on cantilever and the magnets on the rotating mass block. It can collect the nonlinear impact vibration energy of low-frequency motion to meet the energy harvesting of human motion.


2017 ◽  
Vol 28 (12) ◽  
pp. 1682-1696 ◽  
Author(s):  
Linjuan Yan ◽  
Adrien Badel ◽  
Fabien Formosa ◽  
Laurent Petit

A piezoelectric vibration energy harvester aiming at collecting energy from the operation of an electromagnetic digital actuator is presented. It is based on the frequency up-conversion and can simultaneously obtain the information of discrete position location. The objective is an improved reliability of such digital actuators ensuring sample controls of the actuator positions. The considered electromagnetic digital actuator is capable of achieving two-dimensional in-plane movements by switching a mobile permanent magnet among four discrete positions. The demonstration of a first step toward integrated additional autonomous functions scavenging a part of the mechanical energy of the mobile permanent magnet is achieved. The vibration energy harvester consists of a piezoelectric cantilever beam magnetically attached to the mobile permanent magnet. The limited magnetic interaction force allows a frequency up-conversion strategy to be set. The frequency up-conversion technique that is used here consists of a “low frequency” excitation that drives a much higher natural frequency oscillator. Indeed, once the energy harvester separates from the mobile permanent magnet, a free oscillation occurs and the induced mechanical energy is harvested. This design concept is numerically analyzed and experimentally validated. Harvested energy of 4.7 µJ is obtained from preliminary experiments using a simple out-of-plane cantilever beam with 9 N/m stiffness and 16 mN magnetic attraction between the vibration energy harvester and the mobile permanent magnet when they contact each other. This energy is in accordance with the requirements for wireless communication of simple information. Finally, an L-shaped cantilever beam optimized design is proposed for future in-plane integration.


Sign in / Sign up

Export Citation Format

Share Document