Experimental Measurement of Oil Film Thickness Distribution in Titling-Pad Thrust Bearings by Ultrasonic Piezoelectric Elements

Author(s):  
Jie Zhu ◽  
Kai Zhang ◽  
Kai Feng
1977 ◽  
Vol 99 (1) ◽  
pp. 82-88 ◽  
Author(s):  
I. Etsion ◽  
D. P. Fleming

A flat sector shaped pad geometry for gas lubricated thrust bearings is analyzed considering both pitch and roll angles of the pad and the true film thickness distribution. Maximum load capacity is achieved when the pad is tilted so as to create a uniform minimum film thickness along the pad trailing edge. Performance characteristics for various geometries and operating conditions of gas thrust bearings are presented in the form of design curves. A comparison is made with the rectangular slider approximation. It is found that this approximation is unsafe for practical design, since it always overestimates load capacity.


2018 ◽  
Vol 70 (8) ◽  
pp. 1500-1508 ◽  
Author(s):  
Baogang Wen ◽  
Hongjun Ren ◽  
Pengfei Dang ◽  
Xu Hao ◽  
Qingkai Han

PurposeThe oil film thickness provides a key performance indicator of a ball bearing lubrication condition. This paper aims to propose an approach to calculate and measure the oil film thickness of the bearing.Design/methodology/approachOn a specially designed test rig, measurement of the capacitance is used to monitor the oil film thickness of ball bearing. A corrected film thickness formula taking account of the influences of non-Newtonian shear thinning and thermal is introduced to predict the oil film thickness of ball bearing. And then the film thickness distribution and the corresponding capacitances are calculated.FindingsMeasurement and calculation of oil film thickness in a ball bearing are carried out under various rotating speeds and external loads. By comparing the calculated capacitances with measured results, it can be concluded that the calculated results obtained by the amended film thickness formula are much closer to the test findings than the classical computed values according to Hamrock–Dowson.Originality/valueA new corrected film thickness formula is introduced in predicting oil film thickness of ball bearing and verified by the series of experiments according to capacitance method.


Author(s):  
Meng Li ◽  
Li Chen ◽  
Minqing Jing ◽  
Heng Liu ◽  
Yi Liu ◽  
...  

The rollers and raceways in cylindrical roller bearings are separated by an extremely thin lubricant film over a narrow region, which is critical to performance. The ultrasound method has been applied successfully to a range of bearings including journal and ball bearings. But the actual maximum speed that can be measured is limited by the repetition frequency of the ultrasonic pulse. Otherwise, a single measurement point cannot image the thickness distribution of the cylindrical roller bearing. This paper describes the measurement of lubricant-film thickness distribution in a roller bearing by moving the ultrasound transducer. A new ultrasonic pulser-receiver is used to get enough effective measurement points. For a range of loads and speeds, the oil-film thicknesses of four positions along the roller are measured. The influences of the rotating speed and radial load on the film thickness measurement are consistent with the theoretical predictions. The limits of the PRR used in measurements are discussed and the averaging effect of the transducer focal zone size is observed.


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Meng Li ◽  
Heng Liu ◽  
Cong Xu ◽  
Minqing Jing ◽  
Wenhui Xin

This paper describes a measurement of lubricant-film thickness in a roller bearing using a new ultrasonic pulser-receiver, which has a maximum pulse repetition rate (PRR) of 100 kHz. The experimental results show that a higher PRR can help to get more measurement points and more details of the oil-film thickness distribution. Furthermore, the influence of rotor vibration response for the oil-film thickness is discussed, which is in keeping with the simulation result. Finally, the limits of the PRR are discussed in detail and the effect of the transducer focal zone size is also observed.


2008 ◽  
Vol 2008.4 (0) ◽  
pp. 63-64
Author(s):  
Susumu MATSUMOTO ◽  
Yoshiaki KIDO ◽  
Koji NISHIWAKI ◽  
Takeshi YOSHIMI

2007 ◽  
Vol 129 (4) ◽  
pp. 904-912 ◽  
Author(s):  
Niels Heinrichson ◽  
Axel Fuerst ◽  
Ilmar Ferreira Santos

This is Part II of a two-part series of papers describing the effects of high-pressure injection pockets on the operating conditions of tilting-pad thrust bearings. The paper has two main objectives. One is an experimental investigation of the influence of an oil injection pocket on the pressure distribution and oil film thickness. Two situations are analyzed: (i) when the high-pressure oil injection is turned off and (ii) when the high-pressure injection is turned on. The other objective is to validate a numerical model with respect to its ability to predict the influence of such a pocket (with and without oil injection) on the pressure distribution and oil film thickness. Measurements of the distribution of pressure and oil film thickness are presented for tilting-pad thrust bearing pads of ∼100cm2 surface area. Two pads are measured in a laboratory test rig at loads of ∼1.5MPa and ∼4.0MPa and velocities of up to 33m∕s. One pad has a plain surface. The other pad has a conical injection pocket at the pivot point and a leading-edge taper. The measurements are compared to theoretical values obtained using a three-dimensional thermoelastohydrodynamic (TEHD) numerical model. At the low load, the theoretical pressure distribution corresponds well with the measured values for both pads, although the influence of the pocket is slightly underestimated. At the high load, large discrepancies exist for the pad with an injection pocket. It is argued that the discrepancies are due mainly to geometric inaccuracies of the collar surface, although they may to some extent be due to the simplifications employed in a Reynolds equation description of the pocket flow. The measured and theoretical values of oil film thickness compare well at low loads and velocities. At high loads and velocities, discrepancies grow to up to 25%. This is due to the accuracy of the measurements. When using hydrostatic jacking the model predicts the start-up behavior well.


Author(s):  
Niels Heinrichson ◽  
Axel Fuerst ◽  
Ilmar Ferreira Santos

This is Part II of a two-part series of papers describing the effects of high pressure injection pockets on the operating conditions of tilting-pad thrust bearings. Measurements of the distribution of pressure and oil film thickness are presented for tilting-pad thrust bearing pads of approximately 100 cm2 surface area. Two pads are measured in a laboratory test-rig at loads of approximately 0.5, 1.5 and 4.0 MPa and velocities of up to 33 m/s. One pad has a plain surface. The other pad has a conical injection pocket at the pivot point and a leading edge taper. The measurements are compared to theoretical values obtained using a three dimensional thermoelasto-hydrodynamic (TEHD) numerical model. At low and intermediate loads the theoretical pressure distribution corresponds well to the measured values for both pads although the influence of the pocket is slightly underestimated. At high loads large discrepancies exist for the pad with an injection pocket. It is argued that this is likely to be due to the unevenness of the collar surface. The measured and theoretical values of oil film thickness compare well at low loads. At high loads discrepancies grow to up to 25 %. It is argued that this is due to the accuracy of the measurements.


Sign in / Sign up

Export Citation Format

Share Document