The Influence of Injection Pockets on the Performance of Tilting-Pad Thrust Bearings: Part II — Comparison Between Theory and Experiment

Author(s):  
Niels Heinrichson ◽  
Axel Fuerst ◽  
Ilmar Ferreira Santos

This is Part II of a two-part series of papers describing the effects of high pressure injection pockets on the operating conditions of tilting-pad thrust bearings. Measurements of the distribution of pressure and oil film thickness are presented for tilting-pad thrust bearing pads of approximately 100 cm2 surface area. Two pads are measured in a laboratory test-rig at loads of approximately 0.5, 1.5 and 4.0 MPa and velocities of up to 33 m/s. One pad has a plain surface. The other pad has a conical injection pocket at the pivot point and a leading edge taper. The measurements are compared to theoretical values obtained using a three dimensional thermoelasto-hydrodynamic (TEHD) numerical model. At low and intermediate loads the theoretical pressure distribution corresponds well to the measured values for both pads although the influence of the pocket is slightly underestimated. At high loads large discrepancies exist for the pad with an injection pocket. It is argued that this is likely to be due to the unevenness of the collar surface. The measured and theoretical values of oil film thickness compare well at low loads. At high loads discrepancies grow to up to 25 %. It is argued that this is due to the accuracy of the measurements.

2000 ◽  
Vol 123 (3) ◽  
pp. 608-615 ◽  
Author(s):  
Sergei B. Glavatskikh

The paper reports results of the experimental investigation into the steady state performance characteristics of a tilting pad thrust bearing typical of design in general use. Simultaneous measurements are taken of the pad and collar temperatures, the pressure distributions, oil film thickness, and power loss as a function of shaft speed, bearing load, and supplied oil temperature. The effect of operating conditions on bearing performance is discussed. A small radial temperature variation is observed in the collar. A reduction in minimum oil film thickness with load is approximately proportional to p−0.6, where p is an average bearing pressure. It has also been found that the oil film pressure profiles change not only due to the average bearing load but also with an increase in shaft speed and temperature of the supplied oil.


2007 ◽  
Vol 129 (4) ◽  
pp. 895-903 ◽  
Author(s):  
Niels Heinrichson ◽  
Ilmar Ferreira Santos ◽  
Axel Fuerst

This is Part I of a two-part series of papers describing the effects of high-pressure injection pockets on the operating conditions of tilting-pad thrust bearings. In Part I a numerical model based on the Reynolds equation is developed extending the three-dimensional thermoelastohydrodynamic (TEHD) analysis of tilting-pad thrust bearings to include the effects of high-pressure injection and recesses in the bearing pads. The model is applied to the analysis of an existing bearing of large dimensions and the influence of the pocket is analyzed. In the analysis, the high-pressure oil injection used for hydrostatic jacking is turned off (i.e., only the effect of the pocket is studied). It is shown that a shallow pocket positively influences the performance of the bearing because it has characteristics similar to those of a Rayleigh-step bearing. In Part II of the paper (Heinrichson, N., Fuerst, A., and Santos, I. F., 2007, ASME J. Tribol., 129(4), pp. 904–912) measurements of pressure profiles and oil film thickness for a test-pad are compared to theoretical results. The analysis of Part II deals both with flow situations, where the high-pressure injection is turned off, as well as with situations where it is turned on for hydrostatic jacking.


2007 ◽  
Vol 129 (4) ◽  
pp. 904-912 ◽  
Author(s):  
Niels Heinrichson ◽  
Axel Fuerst ◽  
Ilmar Ferreira Santos

This is Part II of a two-part series of papers describing the effects of high-pressure injection pockets on the operating conditions of tilting-pad thrust bearings. The paper has two main objectives. One is an experimental investigation of the influence of an oil injection pocket on the pressure distribution and oil film thickness. Two situations are analyzed: (i) when the high-pressure oil injection is turned off and (ii) when the high-pressure injection is turned on. The other objective is to validate a numerical model with respect to its ability to predict the influence of such a pocket (with and without oil injection) on the pressure distribution and oil film thickness. Measurements of the distribution of pressure and oil film thickness are presented for tilting-pad thrust bearing pads of ∼100cm2 surface area. Two pads are measured in a laboratory test rig at loads of ∼1.5MPa and ∼4.0MPa and velocities of up to 33m∕s. One pad has a plain surface. The other pad has a conical injection pocket at the pivot point and a leading-edge taper. The measurements are compared to theoretical values obtained using a three-dimensional thermoelastohydrodynamic (TEHD) numerical model. At the low load, the theoretical pressure distribution corresponds well with the measured values for both pads, although the influence of the pocket is slightly underestimated. At the high load, large discrepancies exist for the pad with an injection pocket. It is argued that the discrepancies are due mainly to geometric inaccuracies of the collar surface, although they may to some extent be due to the simplifications employed in a Reynolds equation description of the pocket flow. The measured and theoretical values of oil film thickness compare well at low loads and velocities. At high loads and velocities, discrepancies grow to up to 25%. This is due to the accuracy of the measurements. When using hydrostatic jacking the model predicts the start-up behavior well.


Author(s):  
Niels Heinrichson ◽  
Ilmar Ferreira Santos ◽  
Axel Fuerst

This is Part I of a two-part series of papers describing the effects of high pressure injection pockets on the operating conditions of tilting-pad thrust bearings. A numerical model based on the Reynolds equation is developed extending the three dimensional thermo-elasto-hydrodynamic (TEHD) analysis of tilting-pad thrust bearings to include the effects of high pressure injection and recesses in the bearing pad. The model is applied to the analysis of an existing bearing of large dimensions and the influence of the pocket is analyzed. It is shown that a shallow pocket positively influences the performance of the bearing as it has characteristics similar to those of a parallel step bearing.


Author(s):  
Xin Deng ◽  
Cori Watson ◽  
Minhui He ◽  
Roger Fittro ◽  
Houston Wood

A thrust bearing is a particular type of rotary bearing permitting rotation between parts but designed to support a predominately axial load. Part I of this study was submitted to ASME 5th Joint US-European Fluids Engineering Summer Meeting. It compared the experimental, TEHD and CFD results for a thrust bearing. Reasonable relative errors between these three results were observed. The outlet oil film thickness at low speeds and the inlet oil film thickness at high speeds as calculated using TEHD were found to be more accurate than their counterparts. Isothermal, non-deforming CFD was found to predict outlet film thickness accurately as thermal deformation has a lower impact in the outlet region. Isothermal and non-deforming CFD was also found to produce a qualitatively accurate film thickness and pressure distribution. Experimental data from a second paper reported by the same authors in Part I, provides temperature measurements in two different pads and showed some variation of temperature from pad to pad. A thermal CFD, different from isothermal CFD in Part I, was performed in this Part II. Different data analysis methods will be included in Part II including a comparison of leading edge, mid-plane and trailing edge temperature at two loads, two speeds. 24 different speed-load combination TEHD cases and 12 CFD cases were run in Part II in addition to the 32 TEHD cases and 8 CFD cases in Part I. Both TEHD and CFD underpredict the slope between temperature and shaft speeds. TEHD also underpredicts the slope between temperature and bearing loads while CFD can get an accurate slope between temperature and bearing loads. An improved inlet temperature model would fix the error between temperature and bearing load in CFD, and also can enable CFD to have the same accuracy as TEHD analysis for the temperature versus shaft speed relation. The inlet film thickness from both TEHD and CFD is underestimated. TEHD is more accurate than CFD in outlet film thickness, or minimum film thickness, which is a critical performance characteristic in fluid film thrust bearings. While CFD is more accurate than TEHD in inlet film thickness and power loss.


Author(s):  
D. M. C. McCarthy ◽  
S. B. Glavatskih ◽  
I Sherrington

The influence of pad facing material on hydrodynamic lubrication in tilting-pad thrust bearings is investigated in terms of pad and oil-film temperatures and thicknesses. Two tilting-pad thrust bearings are examined: one with babbitt pad facing, the other with a layer of PTFE-based composite material. Frictional torque, pad, collar, and oil-film temperatures and thicknesses are all monitored by means of a comprehensive array of sensors mounted in the bearing and shaft. A considerably smaller range of temperature is seen in the steel backing immediately below the surface material for the PTFE faced pads. Oil-film temperatures measured at the mid-point on the pad trailing edge show no significant difference between the two bearings. Oil-film thicknesses in the two bearings are seen to differ. At the leading edge, oil-film thickness is thinner for the PTFE pad than for babbitt. However, at the trailing edge the PTFE pad has the thicker film.


2016 ◽  
Vol 68 (3) ◽  
pp. 315-324 ◽  
Author(s):  
Liming Zhai ◽  
Zhengwei Wang ◽  
Yongyao Luo ◽  
Zhongjie Li

Purpose The purpose of this paper is to analyze lubrication characteristics of a bidirectional thrust bearing in a pumped storage, considering the effect of the thermal elastic deformation of the pad and collar. Design/methodology/approach This study used the fluid–solid interaction (FSI) technique to investigate the lubrication characteristics of a bidirectional thrust bearing for several typical operating conditions. The influences of the operating conditions and the thrust load on the lubrication characteristics were analyzed. Then, various pivot eccentricities were investigated to analyze the effects of the pivot position. Findings It is found that the effect of the radial tilt angle of the collar runner on the oil film is compensated for by the radial tilt of the pad. The central pivot support system is the main factor limiting the loads of bidirectional thrust bearings. Originality/value This paper has preliminarily revealed the lubrication mechanism of bidirectional tilting-pad thrust bearings. A three-dimensional FSI method is suggested to evaluate the thermal–elastic–hydrodynamic deformations of thrust bearings instead of the conventional method, which iteratively solves the Reynolds equation, the energy equation, the heat conduction equation and the elastic equilibrium equation.


Author(s):  
M. K. Bielec ◽  
A. J. Leopard

The effect on flooded tilting pad thrust bearing performance of a number of external variables is examined. At sliding speeds between 10 and 100 m/s, and for specific pressure between 15 bar and 55 bar, measurements were made of oil film thickness, bearing temperature, and power loss for various oil inlet systems, oil quantities, housing pressures, and degrees of misalignment. Power consumption in high-speed thrust bearings can be safely reduced by the use of directed lubrication with a drained casing, bearing temperature being reduced and oil film thickness increased.


1977 ◽  
Vol 99 (1) ◽  
pp. 82-88 ◽  
Author(s):  
I. Etsion ◽  
D. P. Fleming

A flat sector shaped pad geometry for gas lubricated thrust bearings is analyzed considering both pitch and roll angles of the pad and the true film thickness distribution. Maximum load capacity is achieved when the pad is tilted so as to create a uniform minimum film thickness along the pad trailing edge. Performance characteristics for various geometries and operating conditions of gas thrust bearings are presented in the form of design curves. A comparison is made with the rectangular slider approximation. It is found that this approximation is unsafe for practical design, since it always overestimates load capacity.


1983 ◽  
Vol 105 (1) ◽  
pp. 39-45 ◽  
Author(s):  
A. M. Mikula ◽  
R. S. Gregory

This paper compares three different lubricant supply methods—pressurized supply (flooded), spray feed, and leading edge distribution groove—and analyzes their influence on the performance of tilting pad, equalizing thrust bearings. The paper presents experimental data on 267 mm (10-1/2 in.) o.d. bearings, operating at shaft speeds up to 13,000 rpm with loads ranging up to 3.45 MPa (500 psi). The data presented demonstrate the effect each lubricant supply method has on bearing power loss and temperature. Conclusions are drawn, based upon the effectiveness of each design, to guide the potential user.


Sign in / Sign up

Export Citation Format

Share Document