Part 2: The Effects of Lubricating Oil Film Thickness Distribution on Gasoline Engine Piston Friction

Author(s):  
Kwang-soo Kim ◽  
Thom Godward ◽  
Masaaki Takiguchi ◽  
Shuma Aoki
2018 ◽  
Vol 70 (8) ◽  
pp. 1500-1508 ◽  
Author(s):  
Baogang Wen ◽  
Hongjun Ren ◽  
Pengfei Dang ◽  
Xu Hao ◽  
Qingkai Han

PurposeThe oil film thickness provides a key performance indicator of a ball bearing lubrication condition. This paper aims to propose an approach to calculate and measure the oil film thickness of the bearing.Design/methodology/approachOn a specially designed test rig, measurement of the capacitance is used to monitor the oil film thickness of ball bearing. A corrected film thickness formula taking account of the influences of non-Newtonian shear thinning and thermal is introduced to predict the oil film thickness of ball bearing. And then the film thickness distribution and the corresponding capacitances are calculated.FindingsMeasurement and calculation of oil film thickness in a ball bearing are carried out under various rotating speeds and external loads. By comparing the calculated capacitances with measured results, it can be concluded that the calculated results obtained by the amended film thickness formula are much closer to the test findings than the classical computed values according to Hamrock–Dowson.Originality/valueA new corrected film thickness formula is introduced in predicting oil film thickness of ball bearing and verified by the series of experiments according to capacitance method.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fuqin Yang ◽  
Dexing Hu ◽  
Qianhao Xiao ◽  
Shun Zhao

Purpose This paper aims to study line-contact elastohydrodynamic grease lubrication properties of surface-textured rollers as well as the effect of different crown widths (dw) on oil film thickness under textured conditions. Design/methodology/approach The laser processing method was used to make the micro-texture on the surface of GCr15 steel rollers; lithium grease was used as the lubricant, and line-contact elastohydrodynamic grease lubrication experiments under pure sliding conditions were performed on light interference elastohydrodynamic-lubricated experimental table. Findings The results show that the line-contact elastohydrodynamic grease lubrication is closely related to the textured crown width of steel rollers. At low speeds and light loads, texturing has an inevitable inhibitory effect on the formation of the lubricating oil film, and the smaller the width of the crown area, the more obvious the inhibitory effect, which is not conducive to the improvement of the lubrication condition. At high speeds and high loads, the textured roller with dw = 1 mm has the largest oil film thickness and shows better lubrication performance. Originality/value At present, there is little research on the surface texture of line-contact friction pairs. This work explores the effect of different textured crown width on the lubricating properties of line-contact elastohydrodynamic grease lubrication by experiment. It provides a new theoretical basis for the subsequent practical application of surface texture technology.


2019 ◽  
Vol 71 (1) ◽  
pp. 146-153
Author(s):  
Yanqin Zhang ◽  
Zhiquan Zhang ◽  
Xiangbin Kong ◽  
Rui Li ◽  
Hui Jiang

Purpose The purpose of this paper was to obtain the lubrication characteristics of heavy hydrostatic bearing in heavy equipment manufacturing industry through theoretical analysis and numerical simulation. Design/methodology/approach This paper discusses the influence of oil film thickness variation on velocity field, outlet-L and outlet-R flow velocity under the hydrostatic bearing running in no-load 0 N, load 400 KN, full load 1,500 KN and rotating speeds of 10 r/min, 20 r/min, 30 r/min, 40 r/min, 50 r/min and 60 r/min, by using dynamic mesh technology and FLUENT software. Findings When the working table rotates clockwise, in the change process of oil film thickness, the fluid flow pattern of the lubricating oil at the edge of the sealing oil is the rule of laminar flow, and the oil cavity has a vortex. The outlet-R flow velocity becomes higher and higher by increasing the bearing load and working table speed, and the flow velocity increases with the decrease in oil film thickness; the outlet-L flow velocity increases with the decrease in oil film thickness under low rotating speed (less than 10 r/min) condition and decreases with the decrease of oil film thickness under high rotating speed (more than 60 r/min) condition. Originality/value The influence of the oil film thickness on the flow state distribution of the oil film was analyzed under different working conditions, and the influence rules of oil film thickness on the flow velocity of hydrostatic bearing oil pad was obtained by using dynamic mesh technology.


Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1474
Author(s):  
Heyun Bao ◽  
Tongjing Xu ◽  
Guanghu Jin ◽  
Wei Huang

The working principle and motion process of an aviation wet clutch are analyzed. The initial velocity before the friction pair engaged is solved. The transient Reynolds equation is modified, and an oil film bearing capacity model and a micro-convex bearing capacity model are derived. The film thickness equation between N friction pairs and a pressure-plate is derived. A dynamic engaged model of springs, pistons, friction pairs, and pressure plates are established. The torque balance equation is established of two pairs of friction pairs. The friction torque, rate of change in the oil film, and law of relative change in speed are obtained. The results demonstrate that the spring preload and the viscosity of the lubricating oil have a significant influence on the engagement characteristics. Increasing the quality of the friction plate will reduce the time of engagement, whereas the quality of the friction plate has slight effect on the friction torque characteristics and oil film thickness. The initial speed generated by the collision process will reduce the output speed, sharply increase the torque peak at the lock, and increase the shift shock.


Author(s):  
Magnus Fischer ◽  
Andreas Mueller ◽  
Benjamin Rembold ◽  
Bruno Ammann

In this paper we present a novel method for the numerical simulation of flow in a hydrodynamic thrust bearing with floating disk. Floating disks are commonly employed in turbochargers and are situated between the thrust collar, which is rotating at turbocharger speed, and the static casing. A floating disk reduces wear, improves the skew compensating capacity of the bearing, and is freely movable in the axial direction. The simulation model presented combines a commercial flow solver (ANSYS CFX) with a control unit. Based on physical principles and a predefined axial thrust, the control unit automatically sets the rotational speed of the floating disk, the mass flow of the oil supply, and the oil film thickness between the rotating disk and the casing wall and collar, respectively. The only additional inputs required are the temperature and the pressure of the oil at the oil feed and the turbocharger speed. The width of the computational grid of the thin lubricating oil film in the gaps is adjusted using a mesh-morphing approach. The temperature-dependent variation in viscosity is included in the model. The calculated solution of the flow field in the domain, the oil film thickness, and the resulting rotational velocity of the floating disk are validated against experimental data and demonstrate favorable agreement. The influence of uncertainties in the measurements and the behavior of the systems are thoroughly investigated in parametric studies that reveal the key influencing factors. These are the temperature-dependent viscosity of the oil, the axial thrust, and turbulence effects in the supply grooves and ducts of the floating disk. Using the model presented here, it is now possible to predict design variants for this type of bearing.


2013 ◽  
Vol 681 ◽  
pp. 169-174
Author(s):  
Bin Wang ◽  
Shi Long Chen ◽  
Zhi Feng Ye

To find some rules keeping good lubrication condition for plane port pair in high-performance axial piston pump or motor, especially in the very severe applications, a new test rig was built up to simulate the operational principle of port pair, and to form the lubricating oil film for representative parameter acquisition. This rig is principally characterized by supply pressure up to 30 MPa, accurate control of oil film thickness by separate oil circuit design and electrohydraulic feedback control. The tested oil film working properties was analyzed by comparison with theoretical or simulation references. Experiments show that film balance time and thickness are two key parameters for describing oil film properties, and that working condition factors such as supply pressure, lubricating fluid temperature also notably affects the film thickness and its configuration, but they don’t show equivalent action. Lubrication effects can be valued by the tested frictional torque change of port pair.


2012 ◽  
Vol 550-553 ◽  
pp. 3214-3218
Author(s):  
Jun Yan Zhang ◽  
Shu Kui Han

Based on the unified Reynolds equation model and fast Fourier transform (FFT) method, the lubrication performance of the piston pin bearing for high power density diesel engine was studied by numerical simulation. First of all, through the coupled solving of a unified Reynolds equation and elastic deformation equation, the orbit of journal center for piston pin bearing is investigated. The eccentricity ratio of the piston pin bearing in vertical direction of the piston stroke is smaller, however it is much larger in the downward direction of the piston stroke, which indicate that the below area of the piston pin bearing bears greater load and occurs larger deformation. This is consistent with the reality that the below area of the piston pin bearing is prone to damage and wear. Secondly, the influence of the different bearing clearances and width on the minimum oil film thickness is discussed, The results show that the minimum oil film thickness is increased, while the width of piston pin bearing is increased or the clearance of piston pin bearing is decreased.


Sign in / Sign up

Export Citation Format

Share Document