scholarly journals Numerical and perturbative analysis on non-axisymmetric Homann stagnation-point flow of Maxwell fluid

2021 ◽  
Vol 3 (4) ◽  
Author(s):  
M. Sajid ◽  
M. R. Jagwal ◽  
I. Ahmad

AbstractIn this paper, we examined the numerical and perturbative analysis of non-Newtonian fluid towards non-axisymmetric Homann stagnation-point flow. The Maxwell fluid model is applied to investigate the behavior of viscoelastic fluid for this particular geometry. The influence of Maxwell parameter $${\beta }_{1}$$ β 1 and ratio $$\gamma$$ γ on different profiles are addressed in this analysis. The governed partial differential equations are reduced to ordinary differential equations with the help of similarity transformations. The numerical and perturbative outcomes of the resulting system of differential equations are obtained by applying the shooting technique. The solution is achieved for diverse values of relaxation time parameter $${\beta }_{1}$$ β 1 and ratio $$\gamma$$ γ . The wall shear stress is compared to their large-$$\gamma$$ γ asymptotic behaviors and displacement thicknesses are also presented. The numerical data for velocity profiles are obtained in terms of plots. It is predicted through analysis that a gradual increase in relaxation time raises wall skin friction components. On the other hand, velocity decreases which constitutes to reduce the reverse flow. Meanwhile, displacement thicknesses in $$x$$ x and $$y$$ y direction decreases. However, three-dimensional displacement thickness increases due to more viscoelastic material like Maxwell fluid than viscous fluid.

2021 ◽  
Vol 10 (9) ◽  
pp. 3273-3282
Author(s):  
M.E.H. Hafidzuddin ◽  
R. Nazar ◽  
N.M. Arifin ◽  
I. Pop

The problem of steady laminar three-dimensional stagnation-point flow on a permeable stretching/shrinking sheet with second order slip flow model is studied numerically. Similarity transformation has been used to reduce the governing system of nonlinear partial differential equations into the system of ordinary (similarity) differential equations. The transformed equations are then solved numerically using the \texttt{bvp4c} function in MATLAB. Multiple solutions are found for a certain range of the governing parameters. The effects of the governing parameters on the skin friction coefficients and the velocity profiles are presented and discussed. It is found that the second order slip flow model is necessary to predict the flow characteristics accurately.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 784 ◽  
Author(s):  
Nurul Amira Zainal ◽  
Roslinda Nazar ◽  
Kohilavani Naganthran ◽  
Ioan Pop

The hybrid nanofluid under the influence of magnetohydrodynamics (MHD) is a new interest in the industrial sector due to its applications, such as in solar water heating and scraped surface heat exchangers. Thus, the present study accentuates the analysis of an unsteady three-dimensional MHD non-axisymmetric Homann stagnation point flow of a hybrid Al2O3-Cu/H2O nanofluid with stability analysis. By employing suitable similarity transformations, the governing mathematical model in the form of the partial differential equations are simplified into a system of ordinary differential equations. The simplified mathematical model is then solved numerically by the Matlab solver bvp4c function. This solving approach was proficient in generating more than one solution when good initial guesses were provided. The numerical results presented significant influences on the rate of heat transfer and fluid flow characteristics of a hybrid nanofluid. The rate of heat transfer and the trend of the skin friction coefficient improve with the increment of the nanoparticles’ concentration and the magnetic parameter; however, they deteriorate when the unsteadiness parameter increases. In contrast, the ratio of the escalation of the ambient fluid strain rate to the plate was able to adjourn the boundary layer separation. The dual solutions (first and second solutions) are obtainable when the surface of the sheet shrunk. A stability analysis is carried out to justify the stability of the dual solutions, and hence the first solution is seen as physically reliable and stable, while the second solution is unstable.


2016 ◽  
Vol 12 (2) ◽  
pp. 345-361 ◽  
Author(s):  
Najeeb Alam Khan ◽  
Sidra Khan ◽  
Fatima Riaz

Purpose – The purpose of this paper is to study the three dimensional, steady and incompressible flow of non-Newtonian rate type Maxwell fluid, for stagnation point flow toward an off-centered rotating disk. Design/methodology/approach – The governing partial differential equations are transformed to a system of non-linear ordinary differential equations by conventional similarity transformations. The non-perturbation technique, homotopy analysis method (HAM) is employed for the computation of solutions. And, the solution is computed by using the well-known software Mathematica 10. Findings – The effects of rotational parameter and Deborah number on radial, azimuthal and induced velocity functions are investigated. The results are presented in graphical form. The convergence control parameter is also plotted for velocity profiles. The comparison with the previous results is also tabulated. The skin friction coefficients are also computed for different values of Deborah number. Originality/value – This paper studies the effect of rotation and Deborah number on off-centered rotating disk has been observed and presented graphically.


2021 ◽  
Vol 5 (1) ◽  
pp. 16-26
Author(s):  
Winifred N. Mutuku ◽  
Anselm O. Oyem

This study presents a convectively heated hydromagnetic Stagnation-Point Flow (SPF) of an electrically conducting Casson fluid towards a vertically stretching/shrinking sheet. The Casson fluid model is used to characterize the non-Newtonian fluid behaviour and using similarity variables, the governing partial differential equations are transformed into coupled nonlinear ordinary differential equations. The dimensionless nonlinear equations are solved numerically by Runge-Kutta Fehlberg integration scheme with shooting technique. The effects of the thermophysical parameters on velocity and temperature profiles are presented graphically and discussed quantitatively. The result shows that the flow field velocity decreases with increase in magnetic field parameter and Casson fluid parameter .


2016 ◽  
Vol 138 (11) ◽  
Author(s):  
M. R. Mohaghegh ◽  
Asghar B. Rahimi

The steady three-dimensional stagnation-point flow and heat transfer of a dusty fluid toward a stretching sheet is investigated by using similarity solution approach. The freestream along z-direction impinges on the stretching sheet to produce a flow with different velocity components. The governing equations are transformed into ordinary differential equations by introducing appropriate similarity variables and an exact solution is obtained. The nonlinear ordinary differential equations are solved numerically using Runge–Kutta fourth-order method. The effects of the physical parameters like velocity ratio, fluid and thermal particle interaction parameter, ratio of freestream velocity parameter to stretching sheet velocity parameter, Prandtl number, and Eckert number on the flow field and heat transfer characteristics are obtained, illustrated graphically, and discussed. Also, a comparison of the obtained numerical results is made with two-dimensional cases existing in the literature and good agreement is approved. Moreover, it is found that the heat transfer coefficient and shear stress on the surface for axisymmetric case are larger than nonaxisymmetric case. Also, for stationary flat plat case, a similarity solution is presented and a comparison of the obtained results is made with previously published results and full agreement is reported.


2018 ◽  
Vol 64 (4) ◽  
pp. 420 ◽  
Author(s):  
Abuzar Ghaffari ◽  
T. Javed ◽  
I. Mustafa

Non-linear thermal radiation effects on non-aligned stagnation point flow of Maxwell fluid have been carried out in the present investigation. It is observed that the non-linear radiation augments the temperature and heat transfer rate. This physical phenomenon is translated into a system of partial differential equations (PDEs). After useful transformation, these non-linear constitutive equations are transformed into a system of ordinary differential equations (ODEs) and interpreted numerically by means of parallel shooting technique. Effects of pertinent parameters on flow and heat transfer are elaborated through tables and graphs. It is observed that radiation and surface heating enhance the rate of heat transfer, however Prandtl number has inverse relation with thermal boundary layer thickness. It has been observed that for increasing Prandtl number, heat transfer rate enhances. The detailed discussion of heat transfer rate is also presented in this study. Flow pattern is judged through streamlines graphs. It is also observed that oblique stagnation point flow behaves like orthogonal stagnation point flow, when free stream velocity is very large as compared to stretching velocity.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 549
Author(s):  
Nurul Amira Zainal ◽  
Roslinda Nazar ◽  
Kohilavani Naganthran ◽  
Ioan Pop

There has been significant interest in exploring a stagnation point flow due to its numerous potential uses in engineering applications such as cooling of nuclear reactors. Hence, this study proposed a numerical analysis on the unsteady magnetohydrodynamic (MHD) mixed convection at three-dimensional stagnation point flow in Al2O3–Cu/H2O hybrid nanofluid over a permeable sheet. The ordinary differential equations are accomplished by simplifying the governing partial differential equations through suitable similarity transformation. The numerical computation is established by the MATLAB system software using the bvp4c technique. The bvp4c procedure is excellent in providing more than one solution once sufficient predictions are visible. The influence of certain functioning parameters is inspected, and notable results exposed that the rate of heat transfer is exaggerated along with the skin friction coefficient while the suction/injection and magnetic parameters are intensified. The results also signified that the rise in the volume fraction of the nanoparticle and the decline of the unsteadiness parameter demonstrates a downward attribution towards the heat transfer performance and skin friction coefficient. Conclusively, the observations are confirmed to have multiple solutions, which eventually contribute to an investigation of the analysis of the solution stability, thereby justifying the viability of the first solution.


2017 ◽  
Vol 27 (12) ◽  
pp. 2879-2901
Author(s):  
N. Nithyadevi ◽  
P. Gayathri ◽  
A. Chamkha

Purpose The paper aims to examine the boundary layers of a three-dimensional stagnation point flow of Al-Cu nanoparticle-suspended water-based nanofluid in an electrically conducting medium. The effect of magnetic field on second-order slip effect and convective heating is also taken into account. Design/methodology/approach The thermophysical properties of alloy nanoparticles such as density, specific heat capacity and thermal conductivity are computed using appropriate formula. The non-linear parabolic partial differential equations are transformed to ordinary differential equations and solved by shooting technique. Findings The influence of compositional variation of alloy nanoparticle, nanoparticle concentration, magnetic effect, slip parameters and Biot number are presented for various flow characteristics. Interesting results on skin friction and Nusselt number are obtained for different composition of aluminium and copper. Originality/value A novel result of the analysis reveals that impact of magnetic field near the boundary is suppressed by the slip effect.


2019 ◽  
Vol 8 (1) ◽  
pp. 231-249
Author(s):  
Najeeb Alam Khan ◽  
Farah Naz ◽  
Nadeem Alam Khan ◽  
Saif Ullah

Abstract This paper provides analytical solution of the non-aligned stagnation point flow of second grade fluid over a porous rotating disk in the presence of a magnetic field and suction/injection at the disk surface. The mathematical formulation of the fluid model is obtained in terms of partial differential equations (PDEs). The PDEs governing the motion are transformed into a system of ordinary differential equations (ODEs) by means of a similarity transformation and these corresponding nonlinear ODEs are solved by employing the homotopy analysis method (HAM) and the convergence analysis of the presented method is also performed graphically. An inclusion of the influences of various admissible parameters has been shown numerically and graphically on the flow field. Furthermore, comparison is made and it concedes that the obtained results are found to be in good agreement with results existing in literature.


Sign in / Sign up

Export Citation Format

Share Document