scholarly journals Mode coupling internal resonance characteristics of submerged floating tunnel tether

2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Sheng-nan Sun ◽  
Yu-long Pan ◽  
Zhi-bin Su

Abstract This study presents the mode coupling internal resonance characteristics of submerged floating tunnel tether. In which, in-plane and out-of-plane coupling of tether is taken into account. And the coupled vibration equations of tether for the in-plane first mode and out-of-plane first mode are obtained. The one-to-one mode coupling internal resonance characteristics of submerged floating tunnel tether are studied by numerical analysis method. It is shown that, when the conditions of modal coupling internal resonance are met, with the increase of the external excitation amplitude of the tether, the mid-span displacement of the tether increases gradually. When the amplitude of external excitation is less than a certain value, the internal resonance of tether will not occur. With the increase of damping ratio, the mid-span displacement of the tether decreases gradually. When the damping ratio increases to a certain value, the internal resonance will not occur. The study is helpful to restrain the vibration of submerged floating tunnel tether.

Micromachines ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 448 ◽  
Author(s):  
Navid Noori ◽  
Atabak Sarrafan ◽  
Farid Golnaraghi ◽  
Behraad Bahreyni

In this paper, the nonlinear mode coupling at 2:1 internal resonance has been studied both analytically and experimentally. A modified micro T-beam structure is proposed, and the equations of motion are developed using Lagrange’s energy method. A two-variable expansion perturbation method is used to describe the nonlinear behavior of the system. It is shown that in a microresonator with 2:1 internal resonance, the low-frequency mode is autoparametrically excited after the excitation amplitude reaches a certain threshold. The effect of damping on the performance of the system is also investigated.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Sheng-nan Sun ◽  
Zhi-bin Su ◽  
Yun-fen Feng

To study the nonlinear vibration characteristics of submerged floating tunnel tether, the nonlinear vibration partial differential equation of tether is set up, in which the inclination, sag, initial tension force, and length of tether are taken into account. According to the linear vibration mode of tether, the partial differential equation is converted into ordinary differential equations by Galerkin method and the nonlinear vibration equation of tether for the in-plane first four modes and the out-of-plane first four modes are obtained. The results show that the change of inclination results is in the change of sag. The initial configuration of sag is symmetric. Thus, the sag only affects the damping ratio of the in-plane symmetric mode, namely, that of the first and the third mode. The sag has no effect on the second and forth order modes which are antisymmetric modes. Therefore, the sag is only existed in plane and has no effect on the out-of-plane mode. The first and the third in-plane modal damping ratios of tether are in direct proportion to their inclination, whereas in inverse proportion to their sag. The first modal damping ratio of tether (both in-plane and out-of-plane) is in direct proportion to its length, whereas in inverse proportion to its initial tension.


2014 ◽  
Vol 580-583 ◽  
pp. 1388-1391 ◽  
Author(s):  
Zhi Bin Su ◽  
Sheng Nan Sun

Taking the free vibration system of a submerged floating tunnel tether as research object, the non-linear free vibration equation was set up. By means of Galerkin method, the partial differential equation was transformed into a set of ordinary ones. The damping ratios of the first four modes were obtained after complex eigenvalue analysis. Subsequently, effects of inclination, sag, initial tension force and length of tether on its modal damping ratios were analyzed. The results show that inclination and sag of tether merely affect the damping ratio of first in-plane mode; they have no effect on the damping ratios of higher order in-plane modes and out of plane modes; the first in-plane modal damping ratio of tether is in direct proportion to its inclination, whereas in inverse proportion to its sag; the first modal damping ratio of tether (both in-plane and out of plane) is in direct proportion to its length, whereas in inverse proportion to its initial tension.


2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Shi Peicheng ◽  
Shi Peilei ◽  
Nie Gaofa ◽  
Tang Ye ◽  
Pan Daoyuan

Based on the parallel mechanism theory, a new vibration-isolating platform is designed and its kinetic equation is deduced. Taylor expansion is used to approximately replace the elastic restoring force expression of vibration-isolating platform, and the error analysis is carried out. The dynamic-displacement equation of the vibration-isolating platform is studied by using the Duffing equation with only the nonlinear term. The dynamic characteristics of the vibration-isolating platform are studied, including amplitude-frequency response, jumping-up and jumping-down frequency, and displacement transfer rate under base excitation. The results show that the lower the excitation amplitude, the lower the initial vibration isolation frequency of the system. The influence of the platform damping ratio ζ on displacement transfer rate is directly related to the jumping-down frequency Ωd and the external excitation frequency. The vibration-isolating platform is ideally suited for high-frequency and small-amplitude vibrations.


2019 ◽  
Vol 26 (7-8) ◽  
pp. 459-474
Author(s):  
Saeed Mahmoudkhani ◽  
Hodjat Soleymani Meymand

The performance of the cantilever beam autoparametric vibration absorber with a lumped mass attached at an arbitrary point on the beam span is investigated. The absorber would have a distinct feature that in addition to the two-to-one internal resonance, the one-to-three and one-to-five internal resonances would also occur between flexural modes of the beam by tuning the mass and position of the lumped mass. Special attention is paid on studying the effect of these resonances on increasing the effectiveness and extending the range of excitation amplitudes at which the autoparametric vibration absorber remains effective. The problem is formulated based on the third-order nonlinear Euler–Bernoulli beam theory, where the assumed-mode method is used for deriving the discretized equations of motion. The numerical continuation method is then applied to obtain the frequency response curves and detect the bifurcation points. The harmonic balance method is also employed for detecting the type of internal resonances between flexural modes by inspecting the frequency response curves corresponding to different harmonics of the response. Parametric studies on the performance of the absorber are conducted by varying the position and mass of the lumped mass, while the frequency ratio of the primary system to the first mode of the beam is kept equal to two. Results indicated that the one-to-five internal resonance is especially responsible for the considerable enhancement of the performance.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Xiuyan Hu ◽  
Qingjun Chen ◽  
Dagen Weng ◽  
Ruifu Zhang ◽  
Xiaosong Ren

In the design of damped structures, the additional equivalent damping ratio (EDR) is an important factor in the evaluation of the energy dissipation effect. However, previous additional EDR estimation methods are complicated and not easy to be applied in practical engineering. Therefore, in this study, a method based on energy dissipation is developed to simplify the estimation of the additional EDR. First, an energy governing equation is established to calculate the structural energy dissipation. By means of dynamic analysis, the ratio of the energy consumed by dampers to that consumed by structural inherent damping is obtained under external excitation. Because the energy dissipation capacity of the installed dampers is reflected by the additional EDR, the abovementioned ratio can be used to estimate the additional EDR of the damped structure. Energy dissipation varies with time, which indicates that the ratio is related to the duration of ground motion. Hence, the energy dissipation during the most intensive period in the entire seismic motion duration is used to calculate the additional EDR. Accordingly, the procedure of the proposed method is presented. The feasibility of this method is verified by using a single-degree-of-freedom system. Then, a benchmark structure with dampers is adopted to illustrate the usefulness of this method in practical engineering applications. In conclusion, the proposed method is not only explicit in the theoretical concept and convenient in application but also reflects the time-varying characteristic of additional EDR, which possesses the value in practical engineering.


1976 ◽  
Vol 18 (6) ◽  
pp. 292-302 ◽  
Author(s):  
P. B. Davies

A previously established small-perturbation analysis is developed to express the unsteady-state continuity-of-flow equation for an isolated recess in a passively compensated, multirecess, hydrostatic journal bearing in terms of generalized co-ordinates. The concise form of this equation enables motion of the shaft about the concentric position to be described by equations which are derived in closed form for bearings with orifice, capillary or constant flow compensation and any number of recesses. These equations of motion, and hence the expressions for the receptances which describe the response of a bearing to external excitation, are shown to be of exactly the same form for all bearings of the type considered. Furthermore, the damping ratio and natural frequency in any particular case are determined by a single dynamic constant which is shown to be equal to a linear combination of circular functions and a limited number of coefficients which may be found explicitly by routine use of signal flow graphs. The results of the analysis, which is exact within the stated assumptions, are compared with those of other workers and the steady-state solution of the equations of motion is shown to give an expression for static stiffness which is useful for design purposes. Numerical values of the dynamic constant for bearings with between 3 and 20 recesses are given graphically.


Author(s):  
Farong Zhu ◽  
Robert G. Parker

One-way clutches are frequently used in the serpentine belt accessory drives of automobiles and heavy vehicles. The clutch plays a role similar to a vibration absorber in order to reduce belt/pulley vibration and noise and increase belt life. This paper analyzes a two-pulley system where the driven pulley has a one-way clutch between the pulley and accessory shaft that engages only for positive relative displacement between these components. The belt is modeled with linear springs that transmit torque from the driving pulley to the accessory pulley. The one-way clutch is modeled as a piecewise linear spring with discontinuous stiffness that separates the driven pulley into two degrees of freedom (DOF). The harmonic balance method (HBM) combined with arc-length continuation is employed to illustrate the nonlinear dynamic behavior of the one-way clutch. HBM with arc-length continuation yields the stable and unstable periodic solutions for given parameters. These solutions are examined across a range of excitation frequencies. The results are confirmed by numerical integration and the widely used bifurcation software AUTO. At the first primary resonance, most of the responses are aperiodic, including quasiperiodic and chaotic solutions. At the second primary resonance, the peak bends to the left with classical softening nonlinearity because clutch disengagement decouples the pulley and the accessory over portions of the response period. The dependence on system parameters such as clutch stiffness, excitation amplitude, and inertia ratio between the pulley and accessory is studied to characterize the nonlinear dynamics across a range of conditions.


2018 ◽  
Vol 1 (2) ◽  
pp. 292
Author(s):  
RYANTY DERWENTYANA NAZHAR

Al-Irsyad mosque at Kota Baru Parahyangan is a religious building that has the power of narrative and full of meaning. The elements of interior and exterior are designed by the architect to deliver messages to users. One element of the interior which is the orientation for the user is the Mihrab. Mihrab of this mosque has a unique concept of shape and philosophy. The concept can contain messages that can even up on the ideology that is intended for users who use the facility, and when elements of the space is interpreted (signified), then it becomes a sign (sign). Meaning analysis method that is used is combined with analysis of the typology of signs and sign structure, that will produce a more powerful meaning of the sign. Mihrab Al-Irsyad mosque is one part of a whole section of the mosque, but its role is very important for conveying message, especially message that regarding religious ideology, which is expressed in symbols. Mihrab Al-Irsyad Kota Baru Parahyangan try to use elements of the space as a mark to describe the expression "Quranic", so that each element is applied within the mihrab has a meaning derived from the meaning that comes from the verses of the Qur'an as a source of knowledge for the Islam follower. Expression of space that is designed solely to strengthen the religious beliefs of the congregation of the mosque on infinity, the one, and the greatness of God. Keywords: mihrab; mosque; semiotic; sign


2021 ◽  
pp. 1-28
Author(s):  
Bo Yan ◽  
Peng Ling ◽  
Yanlin Zhou ◽  
Chuan-yu Wu ◽  
Wen-Ming Zhang

Abstract This paper investigates the shock isolation characteristics of an electromagnetic bistable vibration isolator (BVI) with tunable magnetic controlled stiffness. The theoretical model of the BVI is established. The maximum acceleration ratio (MAR), maximum absolute displacement ratio (MADR) and maximum relative displacement ratio (MRDR) are introduced to evaluate the shock isolation performance of the BVI. The kinetic and potential energy are observed to further explore the performance of the BVI. The effects of the potential barrier, shape of potential well, damping ratio on the BVI are discussed compared to the linear vibration isolators (LVI). The results demonstrate that the intrawell oscillations and snap-through oscillations are determined by the excitation amplitude and duration time of main pulse. MADR and MRDR of the BVI are smaller than those of the LVI. The maximum acceleration peak amplitude of the BVI is far below that of the LVI, especially when the snap-through oscillation occurs. In brief, the proposed BVI has a better shock isolation performance than the LVI and has the potential to suppress the shock of space structures during the launch and on-orbit deploying process.


Sign in / Sign up

Export Citation Format

Share Document