scholarly journals Assessment of bank erosion and its impact on land use and land cover dynamics of Mahananda River basin (Upper) in the Sub-Himalayan North Bengal, India

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Kunal Chakraborty ◽  
Snehasish Saha

AbstractBank erosion is the predominant character of River Mahananda in the Sub-Himalayan North Bengal. The present study aims to identify the bank erosion mechanism as well as the impact of river bank erosion on land use and land cover (LULC) dynamics of the study area. Survey of India (SOI) topographical map 78 B/5 (1975) and satellite imageries for the temporal year of 1991 and 2019 from USGS have been used for the study. For the assessment of bank erosion process Bank erosion hazard index (BEHI) model has been adopted here. The channel migration has been delineated by the superimposition of temporal bank lines extracted from the temporal satellite imageries. LULC analysis has been carried out through the supervised classification technique using remote sensing and GIS tools. Form the assessment of BEHI it can be visualized that the scores have been ranging from 30.75 to 44.30 which indicates high to very high vulnerable areas under fluvial erosion. The channel migration for the temporal period from 1991 to 2019 is ranging from 7.72 to 411.16 m along the studied reach which reflects the high erosion effectiveness. From LULC classes it has been assessed that settled or built-up areas have been increased and the water body is gradually decreased overall in the study area. The study resulted that the river bank erosion has its direct impact on land use of the studied area. In the study vulnerable sites to fluvial erosion have been delineated and unplanned land use can be managed through sustainable way.

Author(s):  
D. Neupane ◽  
P. Gyawali ◽  
D. Tamang

<p><strong>Abstract.</strong> Channel migration becomes the main characteristic of major rivers of Mohana-Macheli watershed of western Nepal. Study of river channel migration of major rivers of watershed using freely available remote sensing show that the channel has shifted to as high as 1000 meters from the original river path over the span of 9 years (2009–2017). The channel migration directly affects the land use and it has direct effect on the flood plain settlements of the study area. Cultivation of sugarcane in sand area is one of the mitigating measures of flood effects and prevent river bank erosion. The study shows that the area of sand is changing disproportionately in the region. This paper presents an enhanced change detection method of river channel migration using remotely sensed images and identification of sand area using classification and interpretation technique.</p>


Author(s):  
Sourav Misra ◽  
Tuhin Roy

Aims: Human interference is the most important factor to change the LULC pattern over the earth surface. Land cover means to the physical parameters and land use means the cultural components. The present study associated with the changes in land uses a land cover pattern for the simultaneous changes of geomorphic features as well as the changes in the course of the river. This work is mainly going to summarize the changing behavior of land use land cover areas of a river bank in several decades. Place and duration of the Study: The research area traced in between 24°00’00’’N to 23°16’15’’N and 88°12’00’’E to 88°28’00’’E, which is situated in the eastern part of Purba Bardhaman District, West Bengal. Methodology: Entire study made by GIS techniques through the uses of topographical sheet (SOI-1960, Scale 1:50,000) and Satellite data (2002, 2008 & 2016). Through the help of superimposition technique the changes of river course have been identified which is directly affecting the LULC pattern of the entire flood plain. Result: The study reveals that the entire area changes their LULC pattern which reflects the entire flood plain. Conclusion: Due to the high interference of human physical elements as well as water bodies, sand bar, fallow lands are being decreased in past decades, whereas settlement patches are continuously growing up. It means for the necessity of human livelihood human always have been modifying the land in different ways.


2019 ◽  
Vol 2 ◽  
pp. 1-5
Author(s):  
Pham Thi Huong Lan ◽  
Le Minh Nguyet ◽  
Le Thi Viet Hoa

<p><strong>Abstract.</strong> In this study, a method for developing a quantitative prediction of river bank erosion in Bien Hoa district in Dong Nai River is presented. The river bank erosion hazard index (BEHI) was estimated to assess the stability of the river bank erosion in consultation with bank height, bank slope, rooting depth, rooting density and surface protection. The estimated BEHI of Dong Nai River in Bien Hoa district are high which indicates the riverbank instability. The estimated BEHI along the left bank is about 25&amp;ndash;30. The satellite data of LANSAT TM 5, LANDSAT ETM 7 for the year 1995, 2005 and 2015 were used to assess the nature of shifting of the river bank and to estimate the land loss from river bank. All the derived images were transported on GIS environment to extract the course of the river. 13 sites were considered along the Dong Nai River in Bien Hoa District to estimate the leftward shifting of the bank line and to assess the shifting distance of the river bank line. There is a strong relationship between bank instability BEHI, shifting distance of the bank line and eroded bank area in this study.</p>


Author(s):  
Qijiao Xie ◽  
Qi Sun

Aerosols significantly affect environmental conditions, air quality, and public health locally, regionally, and globally. Examining the impact of land use/land cover (LULC) on aerosol optical depth (AOD) helps to understand how human activities influence air quality and develop suitable solutions. The Landsat 8 image and Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol products in summer in 2018 were used in LULC classification and AOD retrieval in this study. Spatial statistics and correlation analysis about the relationship between LULC and AOD were performed to examine the impact of LULC on AOD in summer in Wuhan, China. Results indicate that the AOD distribution expressed an obvious “basin effect” in urban development areas: higher AOD values concentrated in water bodies with lower terrain, which were surrounded by the high buildings or mountains with lower AOD values. The AOD values were negatively correlated with the vegetated areas while positively correlated to water bodies and construction lands. The impact of LULC on AOD varied with different contexts in all cases, showing a “context effect”. The regression correlations among the normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), normalized difference water index (NDWI), and AOD in given landscape contexts were much stronger than those throughout the whole study area. These findings provide sound evidence for urban planning, land use management and air quality improvement.


2016 ◽  
Vol 93 ◽  
pp. 75-88 ◽  
Author(s):  
Kamal El Kadi Abderrezzak ◽  
Andrés Die Moran ◽  
Pablo Tassi ◽  
Riadh Ata ◽  
Jean-Michel Hervouet

2021 ◽  
Author(s):  
Ghulam Abbas ◽  
Seifeddine Jomaa ◽  
Michael Rode

&lt;p&gt;Information on the share of river bank erosion to the total sediment load at catchment scale by using the fingerprinting approach is important to address our knowledge of erosion processes to better target soil erosion control measures. In particular, river bank erosion is affected by many factors such as spatial and temporal variables and is difficult to quantify the relationship of the share of bank erosion to catchment size and upland erosion rate without extensive fieldwork and data analysis. Potential tracers including geochemical, fallout radionuclides, bulk and compound-specific stable isotopes, and magnetic properties have been used, often in combination with sediment source apportionment. In this worldwide review, the global dataset for percent share of river bank and surface erosion using fingerprinting approach was collected to establish the significance of catchment size and other physical controls on river bank erosion. Google Scholar and Web of Science were used to review research articles that included river bank/subsurface as one of the sediment sources in the study areas. This database showed that the UK (n = 84), USA (n = 14) and Brazil (n = 10) had the highest number of catchments, followed by Iran (n = 4), Southern Zambia (n = 1), Australia (n = 1), Spain (n = 1), Mongolia (n = 1) and Burkina Faso (n = 1) ranging in size from 0.31 to 15000 km&lt;sup&gt;2&lt;/sup&gt;, predominately agriculture. Based on published studies, there is a clear shift of sediment sources from surface erosion to river bank erosion with increasing catchment size. The results show the wide range of relative contributions of surface and river bank sources to the catchment sediment yield around the globe. There are a number of catchments with river bank contribution exceeding 25% and surface contribution exceeding 90% of total sediment loss. This diversity highlights the many factors that influence river bank erosion. In addition to the wide range, sediment source contribution in the range 1-25% from river bank is generally representative around the World. We recommend that long term monitoring of sediment load and surface and river bank sources at nested sites within a catchment are indispensable. Furthermore, limited information on the share of sources often makes it difficult to target mitigation measures reducing sediment loads at the catchment scale.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Keywords: &lt;/strong&gt;Sediment load, catchment size, fingerprinting approach, river bank share&lt;/p&gt;


2021 ◽  
Author(s):  
Thais M. Rosan ◽  
Kees Klein Goldewijk ◽  
Raphael Ganzenmüller ◽  
Michael O'Sullivan ◽  
Julia Pongratz ◽  
...  

&lt;p&gt;Brazil is responsible for about one third of the global land use and land cover change (LULCC) carbon dioxide emissions. However, there is a disagreement among different methodologies on the magnitude and trends in emissions and their geographic distribution. One of the main uncertainties is associated with different LULCC datatasets used as input in the different approaches. In this work we perform an evaluation of LULCC datasets for Brazil, including the global dataset (HYDE 3.2) used in the annual Global Carbon Budget (GCB), and national Brazilian dataset (MapBiomas) over the period 2000-2018. We also analyze the latest global HYDE 3.3 dataset based on new FAO inventory estimates and multi-annual ESA CCI satellite-based land cover maps. Results show that the new HYDE 3.3 can represent well the observed spatial variation in cropland and pastures areas over the last decades compared to national data (MapBiomas) and shows an improvement compared to HYDE 3.2 used in GCB. However, the magnitude of LULCC assessed with HYDE 3.3 is lower than national estimates from MapBiomas. Finally, we used HYDE 3.3 as input to two different approaches included in GCB, a global bookkeeping model (BLUE) and a process-based Dynamic Global Vegetation Model (JULES-ES) to determine the impact of the new version of HYDE dataset on Brazil&amp;#8217;s land-use emissions trends over the period 2000-2017. Both JULES-ES and BLUE now simulate a negative land-use emissions trend for the last two decades. This negative trend is in agreement with Brazilian INPE-EM, global H&amp;N bookkeeping models, FAO and as reported in National GHG inventories (NGHGI), although magnitudes differ among approaches. Overall, the inclusion of the multi-annual ESA CCI Land Cover dataset to allocate spatially the FAO statistical data has improved spatial representation of agricultural area change in Brazil in the last two decades, contributing to improve global model capability to simulate Brazil&amp;#8217;s LULCC emissions in agreement with national trends estimates and spatial distribution.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document