Laboratory evaluation of treated recycled concrete aggregate in asphalt mixtures

2019 ◽  
Vol 12 (1) ◽  
pp. 26-32 ◽  
Author(s):  
Amir Kavussi ◽  
Abolfazl Hassani ◽  
Farbod Kazemian ◽  
Mohammad Taghipoor
2019 ◽  
Vol 12 (1) ◽  
pp. 250 ◽  
Author(s):  
Debora Acosta Álvarez ◽  
Anadelys Alonso Aenlle ◽  
Antonio José Tenza-Abril ◽  
Salvador Ivorra

The main objective of this work is to evaluate the properties of hot asphalt mixtures that have been manufactured with different recycled concrete aggregate (RCA) percentages (0%, 20%, 40%, 60% and 80% of the fraction 5–13 mm) and asphalt (4%, 4.5% and 5%). Dense asphalt mixtures were made; partially replacing the natural aggregate (NA) fraction between 5 and 13 mm. Marshall specimens were manufactured to determine the main properties of the asphalt concrete (AC) in terms of density, voids, stability and deformation. Additionally, the optimal asphalt content (OAC) was determined, and measured the water sensibility, the stiffness modulus and the permanent deformation. The results corroborate the potential for using these sources of construction and demolition waste (CDW) as a RCA in asphalt concrete and show that the hot asphalt mixtures with up to 40% substitution of natural aggregate by recycled aggregate in the fraction 5–13 mm present good behavior.


2020 ◽  
Vol 41 (2) ◽  
pp. 157
Author(s):  
Fernanda Gadler ◽  
Leonardo Fagundes Rosemback Miranda ◽  
Joe Villena

The main purpose is to evaluate the performance of asphalt regarding resilient modulus and fatigue curve.The asphalt was produced with two wastes, reclaimed asphalt pavement (RAP) and recycled concrete aggregate (RCA), using the technique of warm mixtures. The evaluation includes, based on these parameters, the thickness differences in the design of asphalt layer for each mixture. Five asphalt mixtures were produced with incorporation of RAP and RCA, in different gradation fractions (fine and/or course), without adding any natural aggregate. In view of the aim of the article, the mixtures were evaluated through tests of resilient modulus and fatigue life, in order to support the design, establishing the necessary thickness to meet traffic demands of each mixture. The design was performed using MeDiNa software. Among all results, it is highlighted that asphalt binder content is the component that exerts the greatest influence on the resilient modulus of the mixtures. As for fatigue, in addition to the binder content, the possible anchoring of the asphalt binder in the pores of the RCA may have favored the performance of the GARC_MRAP mixture. Still, all mixtures with RAP, both in fine or course fraction, resulted in lower coating thicknesses compared to the REF, for the same load request, with better performance of the GARC_MRAP mixture produced with 100 % waste material and incorporation of only 3.1 % neat binder.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5592
Author(s):  
Edgar H. Sánchez-Cotte ◽  
Carlos Albeiro Pacheco-Bustos ◽  
Ana Fonseca ◽  
Yaneth Pineda Triana ◽  
Ronald Mercado ◽  
...  

The incorporation of a recycled concrete aggregate (RCA) as a replacement of natural aggregates (NA) in road construction has been the subject of recent research. This tendency promotes sustainability, but its use depends mainly on the final product’s properties, such as chemical stability. This study evaluates the physical and chemical properties of RCAs from two different sources in comparison with the performance of NA. One RCA was obtained from the demolition of a building (recycled concrete aggregate of a building—RCAB) and another RCA from the rehabilitation of a Portland cement concrete pavement (recycled concrete aggregate from a pavement—RCAP). Characterization techniques such as X-ray fluorescence (XRF), X-ray diffraction (XRD), UV spectroscopy, and atomic absorption spectrometry were used to evaluate the RCAs’ coarse fractions for chemical potential effects on asphalt mixtures. NA was replaced with RCA at 15%, 30%, and 45% for each size of the coarse fractions (retained 19.0, 12.5, 9.5, and 4.75 sieves in mm). The mineralogical characterization results indicated the presence of quartz (SiO2) and calcite (CaCO3) as the most significant constituents of the aggregates. XFR showed that RCAs have lower levels of CaO and Al2O3 concerning NA. Potential reactions in asphalt mixtures by nitration, sulfonation, amination of organic compounds, and reactions by alkaline activation in the aggregates were discarded due to the minimum concentration of components such as NO2, (–SO3H), (–SO2Cl), and (Na) in the aggregates. Finally, this research concludes that studied RCAs might be used as replacements of coarse aggregate in asphalt mixtures since chemical properties do not affect the overall chemical stability of the asphalt mixture.


2020 ◽  
Vol 12 (10) ◽  
pp. 3949 ◽  
Author(s):  
Aleksandar Radević ◽  
Ivan Isailović ◽  
Michael P. Wistuba ◽  
Dimitrije Zakić ◽  
Marko Orešković ◽  
...  

The need for road (re)construction materials is constantly growing. At the same time, there is a limited quantity of new, high-quality materials available and a buildup of secondary/recycled construction materials. One possible solution may be the use of recycled concrete aggregate (RCA) in asphalt mixtures instead of natural aggregate (NA), which also promotes economic and environmental sustainability. The potential use of fine and coarse RCA in road asphalt mixtures is analyzed in this work. Nine asphalt mixtures were tested for base course layers, where RCA was used as a NA substitute. The impact of the quantity of RCA (up to 45% by mass) on the resulting physical and mechanical properties of asphalt mixtures was investigated, and consequently compared with the properties of a reference control mixture produced with NA only. Results reveal that the addition of RCA requires higher bitumen in comparison to the control mixture (up to 1%). Consequently, mixtures with RCA had 15−20% lower stiffness and up to 26% higher critical fatigue strain value (ε6). Although RCA mixtures contained more bitumen, their low-temperature resistance was slightly inferior compared with the control mixture (failure temperatures were up to 4.3 °C higher). In conclusion, asphalt mixtures with up to 45% RCA can be used without substantially reducing performance.


Author(s):  
Aleksandar Radević

The objective of this paper was to assess the possibility of using fine recycled concrete aggregate (RCA) in asphalt mixtures. The experimental research included four asphalt mixtures with partial natural aggregate substitution by fine RCA (0/4 mm), in the amount of 0% (control mixture), 15%, 30% and 45%, by mass. All asphalt mixtures were designed for the base course. The stiffness modulus of asphalt mixtures with RCA was lower compared with the control mixture. The use of fine RCA had no significant influence on the water sensitivity and ranged from -2.4% to +1.7% relative to the control mixture. Resistance to permanent deformation increases with the addition of up to 30% fine RCA.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Mohammad Saeed Pourtahmasb ◽  
Mohamed Rehan Karim

Environmental and economic considerations have encouraged civil engineers to find ways to reuse recycled materials in new constructions. The current paper presents an experimental research on the possibility of utilizing recycled concrete aggregates (RCA) in stone mastic asphalt (SMA) and hot mix asphalt (HMA) mixtures. Three categories of RCA in various percentages were mixed with virgin granite aggregates to produce SMA and HMA specimens. The obtained results indicated that, regardless of the RCA particular sizes, the use of RCA to replace virgin aggregates increased the needed binder content in the asphalt mixtures. Moreover, it was found that even though the volumetric and mechanical properties of the asphalt mixtures are highly affected by the sizes and percentages of the RCA but, based on the demands of the project and traffic volume, utilizing specific amounts of RCA in both types of mixtures could easily satisfy the standard requirements.


Sign in / Sign up

Export Citation Format

Share Document