Impacts of soil qualities and Prosopis juliflora on density, canopy volume and community position of Leptadenia pyrotechnica in Arid regions of India

2021 ◽  
Author(s):  
Manish Mathur ◽  
Mahesh Kumar ◽  
C. B. Pandey
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Purity Rima Mbaabu ◽  
Daniel Olago ◽  
Maina Gichaba ◽  
Sandra Eckert ◽  
René Eschen ◽  
...  

AbstractGrassland degradation and the concomitant loss of soil organic carbon is widespread in tropical arid and semi-arid regions of the world. Afforestation of degraded grassland, sometimes by using invasive alien trees, has been put forward as a legitimate climate change mitigation strategy. However, even in cases where tree encroachment of degraded grasslands leads to increased soil organic carbon, it may come at a high cost since the restoration of grassland-characteristic biodiversity and ecosystem services will be blocked. We assessed how invasion by Prosopis juliflora and restoration of degraded grasslands in a semi-arid region in Baringo, Kenya affected soil organic carbon, biodiversity and fodder availability. Thirty years of grassland restoration replenished soil organic carbon to 1 m depth at a rate of 1.4% per year and restored herbaceous biomass to levels of pristine grasslands, while plant biodiversity remained low. Invasion of degraded grasslands by P. juliflora increased soil organic carbon primarily in the upper 30 cm and suppressed herbaceous vegetation. We argue that, in contrast to encroachment by invasive alien trees, restoration of grasslands in tropical semi-arid regions can both serve as a measure for climate change mitigation and help restore key ecosystem services important for pastoralists and agro-pastoralist communities.


2003 ◽  
Vol 5 (1) ◽  
pp. 51-56 ◽  
Author(s):  
C.G. Silva ◽  
M.E.R.M.C. Mata ◽  
M.E.D. Braga ◽  
V.S. Queiroz
Keyword(s):  

2013 ◽  
Vol 37 (5) ◽  
pp. 436-442 ◽  
Author(s):  
Ming-Hu LIU ◽  
Zhi-Ming XIN ◽  
Jun XU ◽  
Fei SUN ◽  
Li-Jun DOU ◽  
...  

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 529a-529
Author(s):  
Rebecca L. Darnell ◽  
J.G. Williamson ◽  
T.A. Obreza

A high-density planting of three southern highbush cultivars was established in 1994 in southwest Florida to test the feasibility of a non-dormant blueberry production system. A non-dormant system involves continuous application of nitrogen throughout fall and winter, which enables the plants to avoid the normal dormancy cycle and the concomitant chilling requirement. Three nitrogen fertilizer rates and two organic soil amendments (muncipal solid waste compost and acidic peat) were evaluated for effects on maintaining plant growth in this system. In general, increasing N rates from 84 to 252 kg·ha–1 increased plant canopy volume, leaf retention, and rate of new vegetative budbreak. Plant height and volume were consistently greater for plants grown in the compost compared to the peat amendment, but there were no differences in leaf retention or vegetative budbreak between the two soil amendments. Flower bud density and fruit yield were increased in plants grown in the compost compared to the peat, while N rate had no effect on either. Plants in this non-dormant system have shown no deleterious growth effects, suggesting that establishing a blueberry planting in a warm winter climate is feasible under the described conditions.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 451e-451
Author(s):  
J.R. Schupp ◽  
S.I. Koller

`Cortland'/M.9 EMLA trees were planted in 1991 at 1.8 ×4.2-m spacing. The trees were trained to one of four systems: 1) Vertical Axis; 2) Y trellis; 3) Solen; or 4) Palmette trellis. Tree survival was 86% for Palmette trees and approached 100% for the other three systems. Annual yield and cumulative yield per tree of Vertical Axis and Y trellis was twice that of Solen or Palmette. Tree vigor was sub-optimal relative to planting distance in this study. Trunk cross-sectional area of Vertical Axis trees was larger than that of trees trained to Solen or Palmette, while trees trained to Y trellis were intermediate in trunk growth. Canopy volumes of Vertical Axis and Y trellis trees were similar, and greater than that of Solen or Palmette trees. Fruit size on Solen and Palmette trees was larger than that of Y trellis trees in 1995 and 1996, while fruit size on Vertical Axis trees was intermediate. Cumulative yield per cubic meter of canopy volume was the same for all four systems, suggesting that differences in productivity among systems were attributable to the effects of tree training practices on tree size, not to differences among systems in precocity or efficiency. The low heading cut needed to establish the lowest tier of branches on the Palmette system reduced tree vigor and in some cases, resulted in mortality. The horizontal training of the primary branches of the Solen severely reduced tree vigor. In this study, where tree vigor was sub-optimal due to rootstock selection, the additional restrictions in tree growth resulting from restrictive training methods resulted in a significant loss in productivity.


2020 ◽  
Vol 76 (11) ◽  
Author(s):  
Senni Rachida ◽  
De Belair Gerard ◽  
Abdelkrim Hacene
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document