scholarly journals Anticipative Dynamic Slotting for Attended Home Deliveries

2021 ◽  
Vol 2 (4) ◽  
Author(s):  
Magdalena A. K. Lang ◽  
Catherine Cleophas ◽  
Jan Fabian Ehmke

AbstractAttended home delivery requires offering narrow delivery time slots for online booking. Given a fixed fleet of delivery vehicles and uncertainty about the value of potential future customers, retailers have to decide about the offered delivery time slots for each individual order. To this end, dynamic slotting techniques compare the reward from accepting an order to the opportunity cost of not reserving the required delivery capacity for later orders. However, exactly computing this opportunity cost means solving a complex vehicle routing and scheduling problem. In this paper, we propose and evaluate several dynamic slotting approaches that rely on an anticipatory, simulation-based preparation phase ahead of the order horizon to approximate opportunity cost. Our approaches differ in their reliance on outcomes from the preparation phase (anticipation) versus decision making on request arrival (flexibility). For the preparation phase, we create anticipatory schedules by solving the Team Orienteering Problem with Multiple Time Windows. From stochastic demand streams and problem instance characteristics, we apply learning models to flexibly estimate the effort of accepting and delivering an order request. In an extensive computational study, we explore the behavior of the proposed solution approaches. Simulating scenarios of different sizes shows that all approaches require only negligible run times within the order horizon. Finally, an empirical scenario demonstrates the concept of estimating demand model parameters from sales observations and highlights the applicability of the proposed approaches in practice.

Author(s):  
Maren Schnieder ◽  
Chris Hinde ◽  
Andrew West

Global concerns about the environmental effects (e.g., pollution, land use, noise) of last-mile deliveries are increasing. Parcel lockers are seen as an option to reduce these external effects of last-mile deliveries. The contributions of this paper are threefold: firstly, the research studies simulating the emissions caused by parcel delivery to lockers are summarized. Secondly, a demand model for parcel deliveries in New York City (NYC) is created for 365 days and delivery trips to lockers and homes are optimized for 20 “real-world” scenarios. Thirdly, using the emission factors included in the HandBook Emission Factors for Road Transport (HBEFA) database, the maximum percentage of customers who could pick up a parcel by car from parcel lockers that would result in fewer total emissions (driving customers + walking customers) than if home deliveries were adopted is calculated for various pollutants and scenario assumptions (i.e., street types, temperature, parking duration, level of service and vehicle drivetrain). This paper highlights how small changes in the calibration can significantly change the results and therefore using average values for emission factors or only considering one pollutant like most studies may not be appropriate.


2017 ◽  
Vol 313 (2) ◽  
pp. F218-F236 ◽  
Author(s):  
Chang-Joon Lee ◽  
Bruce S. Gardiner ◽  
Jennifer P. Ngo ◽  
Saptarshi Kar ◽  
Roger G. Evans ◽  
...  

We develop a pseudo-three-dimensional model of oxygen transport for the renal cortex of the rat, incorporating both the axial and radial geometry of the preglomerular circulation and quantitative information regarding the surface areas and transport from the vasculature and renal corpuscles. The computational model was validated by simulating four sets of published experimental studies of renal oxygenation in rats. Under the control conditions, the predicted cortical tissue oxygen tension ([Formula: see text]) or microvascular oxygen tension (µPo2) were within ±1 SE of the mean value observed experimentally. The predicted [Formula: see text] or µPo2 in response to ischemia-reperfusion injury, acute hemodilution, blockade of nitric oxide synthase, or uncoupling mitochondrial respiration, were within ±2 SE observed experimentally. We performed a sensitivity analysis of the key model parameters to assess their individual or combined impact on the predicted [Formula: see text] and µPo2. The model parameters analyzed were as follows: 1) the major determinants of renal oxygen delivery ([Formula: see text]) (arterial blood Po2, hemoglobin concentration, and renal blood flow); 2) the major determinants of renal oxygen consumption (V̇o2) [glomerular filtration rate (GFR) and the efficiency of oxygen utilization for sodium reabsorption (β)]; and 3) peritubular capillary surface area (PCSA). Reductions in PCSA by 50% were found to profoundly increase the sensitivity of [Formula: see text] and µPo2 to the major the determinants of [Formula: see text] and V̇o2. The increasing likelihood of hypoxia with decreasing PCSA provides a potential explanation for the increased risk of acute kidney injury in some experimental animals and for patients with chronic kidney disease.


Author(s):  
NA LI ◽  
MARTIN CRANE ◽  
HEATHER J. RUSKIN

SenseCam is an effective memory-aid device that can automatically record images and other data from the wearer's whole day. The main issue is that, while SenseCam produces a sizeable collection of images over the time period, the vast quantity of captured data contains a large percentage of routine events, which are of little interest to review. In this article, the aim is to detect "Significant Events" for the wearers. We use several time series analysis methods such as Detrended Fluctuation Analysis (DFA), Eigenvalue dynamics and Wavelet Correlations to analyse the multiple time series generated by the SenseCam. We show that Detrended Fluctuation Analysis exposes a strong long-range correlation relationship in SenseCam collections. Maximum Overlap Discrete Wavelet Transform (MODWT) was used to calculate equal-time Correlation Matrices over different time scales and then explore the granularity of the largest eigenvalue and changes of the ratio of the sub-dominant eigenvalue spectrum dynamics over sliding time windows. By examination of the eigenspectrum, we show that these approaches enable detection of major events in the time SenseCam recording, with MODWT also providing useful insight on details of major events. We suggest that some wavelet scales (e.g., 8 minutes–16 minutes) have the potential to identify distinct events or activities.


2017 ◽  
Vol 13 (5) ◽  
pp. 1-27
Author(s):  
Nurhadi Siswanto ◽  
◽  
Stefanus Eko Wiratno ◽  
Ahmad Rusdiansyah ◽  
Ruhul Sarker ◽  
...  

2019 ◽  
Vol 6 (7) ◽  
pp. 180643 ◽  
Author(s):  
J. C. Gerlach ◽  
G. Demos ◽  
D. Sornette

We present a detailed bubble analysis of the Bitcoin to US Dollar price dynamics from January 2012 to February 2018. We introduce a robust automatic peak detection method that classifies price time series into periods of uninterrupted market growth (drawups) and regimes of uninterrupted market decrease (drawdowns). In combination with the Lagrange Regularization Method for detecting the beginning of a new market regime, we identify three major peaks and 10 additional smaller peaks, that have punctuated the dynamics of Bitcoin price during the analysed time period. We explain this classification of long and short bubbles by a number of quantitative metrics and graphs to understand the main socio-economic drivers behind the ascent of Bitcoin over this period. Then, a detailed analysis of the growing risks associated with the three long bubbles using the Log-Periodic Power-Law Singularity (LPPLS) model is based on the LPPLS Confidence Indicators , defined as the fraction of qualified fits of the LPPLS model over multiple time windows. Furthermore, for various fictitious ‘present’ times t 2 before the crashes, we employ a clustering method to group the predicted critical times t c of the LPPLS fits over different time scales, where t c is the most probable time for the ending of the bubble. Each cluster is proposed as a plausible scenario for the subsequent Bitcoin price evolution. We present these predictions for the three long bubbles and the four short bubbles that our time scale of analysis was able to resolve. Overall, our predictive scheme provides useful information to warn of an imminent crash risk.


2017 ◽  
Vol 46 (5) ◽  
pp. 805-825 ◽  
Author(s):  
Li Wan ◽  
Ying Jin

Robust calibration and validation of applied urban models are prerequisites for their successful, policy-cogent use. This is particularly important today when expert assessment is questioned and closely scrutinized. This paper proposes a new model calibration-validation strategy based on a spatial equilibrium model that incorporates multiple time horizons, such that the predictive capabilities of the model can be empirically tested. The model is implemented for the Greater Beijing city region and the model validation strategy is demonstrated over the Census years 2000 to 2010. Through forward/backward forecasting, the model validation helps to verify the stability of the model parameters as well as the predictive capabilities of the recursive equilibrium framework. The proposed modelling strategy sets a new standard for verifying and validating recursive equilibrium models. We also consider the wider implications of the approach.


Omega ◽  
2019 ◽  
Vol 86 ◽  
pp. 154-172 ◽  
Author(s):  
Fábio Neves-Moreira ◽  
Bernardo Almada-Lobo ◽  
Jean-François Cordeau ◽  
Luís Guimarães ◽  
Raf Jans

2020 ◽  
Vol 54 (3) ◽  
pp. 823-838
Author(s):  
Yongjia Song ◽  
Marlin W. Ulmer ◽  
Barrett W. Thomas ◽  
Stein W. Wallace

In this paper, we consider service applications where drivers serve subscription customers at their homes on a regular basis and at known times. To build trust with customers, the company requires that subscription customers are consistently served by the same driver. In addition to subscription customers, on-demand customers request delivery on a daily basis. For the company, the challenge is to consistently serve the subscription customers while simultaneously maximizing the daily profit from the on-demand customers. We model the problem as a two-stage stochastic decision problem. The first stage determines the assignment of drivers to subscription customers. The second stage is a team-orienteering problem with time windows and mandatory visits by fixed drivers. We present an anticipatory consistent customer assignment policy (ACCA) based on the multiple scenario approach framework. Our computational study shows that ACCA significantly outperforms consistency concepts from the literature, while increasing costs less than 5%.


Sign in / Sign up

Export Citation Format

Share Document