scholarly journals 3D DIC-assisted residual stress measurement in 316 LVM steel processed by HE and HPT

Author(s):  
Tomasz Brynk ◽  
Agnieszka Teresa Krawczyńska ◽  
Daria Setman ◽  
Zbigniew Pakieła

Abstract A method has been developed for determining residual stress based on displacement fields near drilled holes analyzed using 3D digital image correlation. Finite element modeling was used to determine corrections for analytical equations describing displacement fields near the blind holes, which made it possible to determine the residual stress distribution over a wide range of hole depth-to-hole diameter ratios and various areas of displacement field measurements using inverse method iterative calculations. The proposed method eliminates many drawbacks of traditional procedure based on strain gauges as hole eccentricity sensitivity and requirement of the relatively large span between holes. The method and testing setup, build-up of generally available components, were used to determine the residual stress distribution for 316 LVM samples processed by two methods from the large deformation group: hydrostatic extrusion (HE) and high-pressure torsion (HPT), by drilling 1.75 and 0.58-mm-diameter blind holes, respectively. In the case of the measurements performed on the surface of a HE-processed 16 mm bar cut along its diameter, a gradual change was revealed—from a compressive to a tensile residual stress distribution (from ~ − 300 MPa in the center to 400 MPa in 4 mm distance from the edge) in the longitudinal direction, with near-zero values in the radial direction. Moreover, the method was also adapted to perform measurements on the outside surface of the bar, which gave results consistent with those taken along the radius profile (~ 600 MPa longitudinal stress). Measurements on the top surface of a cylinder 10 mm in diameter and 1 mm high processed by HPT showed a high compressive residual stress in the center and a dominant shear component for the holes drilled at different distances from the center.

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 366
Author(s):  
Zhou Chen ◽  
Yibo Jiang ◽  
Zheming Tong ◽  
Shuiguang Tong

The rolling contact fatigue of gear surfaces in a heavy loader gearbox is investigated under various working conditions using the critical plane-based multiaxial Fatemi–Socie criterion. The mechanism for residual stress to increase the fatigue initiation life is that the compressive residual stress has a negative normal component on the critical plane. Based on this mechanism, the genetic algorithm is used to search the optimum residual stress distribution that can maximize the fatigue initiation life for a wide range of working conditions. The optimum residual stress distribution is more effective in increasing the fatigue initiation life when the friction coefficient is larger than its critical value, above which the fatigue initiation moves from the subsurface to the surface. Finally, the effect on the fatigue initiation life when the residual stress distribution deviates from the optimum distribution is analyzed. A sound physical explanation for this effect is provided. This yields a useful guideline to design the residual stress distribution.


2007 ◽  
Vol 345-346 ◽  
pp. 1469-1472
Author(s):  
Gab Chul Jang ◽  
Kyong Ho Chang ◽  
Chin Hyung Lee

During manufacturing the welded joint of steel structures, residual stress is produced and weld metal is used inevitably. And residual stress and weld metal influence on the static and dynamic mechanical behavior of steel structures. Therefore, to predict the mechanical behavior of steel pile with a welded joint during static and dynamic deformation, the research on the influence of the welded joints on the static and dynamic behavior of steel pile is clarified. In this paper, the residual stress distribution in a welded joint of steel piles was investigated by using three-dimensional welding analysis. The static and dynamic mechanical behavior of steel piles with a welded joint is investigated by three-dimensional elastic-plastic finite element analysis using a proposed dynamic hysteresis model. Numerical analyses of the steel pile with a welded joint were compared to that without a welded joint with respect to load carrying capacity and residual stress distribution. The influence of the welded joint on the mechanical behavior of steel piles during static and dynamic deformation was clarified by comparing analytical results


Author(s):  
A.G. Ramu ◽  
Sunwoo Kim ◽  
Heungwoo Jeon ◽  
Amal M. Al-Mohaimeed ◽  
Wedad A. Al-onazi ◽  
...  

Author(s):  
René Selbmann ◽  
Markus Baumann ◽  
Mateus Dobecki ◽  
Markus Bergmann ◽  
Verena Kräusel ◽  
...  

AbstractThe residual stress distribution in extruded components and wires after a conventional forming process is frequently unfavourable for subsequent processes, such as bending operations. High tensile residual stresses typically occur near the surface of the wire and thus limit further processability of the material. Additional heat treatment operations or shot peening are often inserted to influence the residual stress distribution in the material after conventional manufacturing. This is time and energy consuming. The research presented in this paper contains an approach to influence the residual stress distribution by modifying the forming process for wire-like applications. The aim of this process is to lower the resulting tensile stress levels near the surface or even to generate compressive stresses. To achieve these residual compressive stresses, special forming elements are integrated in the dies. These modifications in the forming zone have a significant influence on process properties, such as degree of deformation and deformation direction, but typically have no influence on the diameter of the product geometry. In the present paper, the theoretical approach is described, as well as the model set-up, the FE-simulation and the results of the experimental tests. The characterization of the residual stress states in the specimen was carried out by X-ray diffraction using the sin2Ψ method.


Sign in / Sign up

Export Citation Format

Share Document