scholarly journals A Classification Model of Legal Consulting Questions Based on Multi-Attention Prototypical Networks

Author(s):  
Jianzhou Feng ◽  
Jinman Cui ◽  
Qikai Wei ◽  
Zhengji Zhou ◽  
Yuxiong Wang

AbstractText classification is a research hotspot in the field of natural language processing. Existing text classification models based on supervised learning, especially deep learning models, have made great progress on public datasets. But most of these methods rely on a large amount of training data, and these datasets coverage is limited. In the legal intelligent question-answering system, accurate classification of legal consulting questions is a necessary prerequisite for the realization of intelligent question answering. However, due to lack of sufficient annotation data and the cost of labeling is high, which lead to the poor effect of traditional supervised learning methods under sparse labeling. In response to the above problems, we construct a few-shot legal consulting questions dataset, and propose a prototypical networks model based on multi-attention. For the same category of instances, this model first highlights the key features in the instances as much as possible through instance-dimension level attention. Then it realizes the classification of legal consulting questions by prototypical networks. Experimental results show that our model achieves state-of-the-art results compared with baseline models. The code and dataset are released on https://github.com/cjm0824/MAPN.

Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4583 ◽  
Author(s):  
Xiaoqiang Liu ◽  
Yanming Chen ◽  
Shuyi Li ◽  
Liang Cheng ◽  
Manchun Li

Airborne laser scanning (ALS) can acquire both geometry and intensity information of geo-objects, which is important in mapping a large-scale three-dimensional (3D) urban environment. However, the intensity information recorded by ALS will be changed due to the flight height and atmospheric attenuation, which decreases the robustness of the trained supervised classifier. This paper proposes a hierarchical classification method by separately using geometry and intensity information of urban ALS data. The method uses supervised learning for stable geometry information and unsupervised learning for fluctuating intensity information. The experiment results show that the proposed method can utilize the intensity information effectively, based on three aspects, as below. (1) The proposed method improves the accuracy of classification result by using intensity. (2) When the ALS data to be classified are acquired under the same conditions as the training data, the performance of the proposed method is as good as the supervised learning method. (3) When the ALS data to be classified are acquired under different conditions from the training data, the performance of the proposed method is better than the supervised learning method. Therefore, the classification model derived from the proposed method can be transferred to other ALS data whose intensity is inconsistent with the training data. Furthermore, the proposed method can contribute to the hierarchical use of some other ALS information, such as multi-spectral information.


Author(s):  
Jindong Chen ◽  
Yizhou Hu ◽  
Jingping Liu ◽  
Yanghua Xiao ◽  
Haiyun Jiang

Short text classification is one of important tasks in Natural Language Processing (NLP). Unlike paragraphs or documents, short texts are more ambiguous since they have not enough contextual information, which poses a great challenge for classification. In this paper, we retrieve knowledge from external knowledge source to enhance the semantic representation of short texts. We take conceptual information as a kind of knowledge and incorporate it into deep neural networks. For the purpose of measuring the importance of knowledge, we introduce attention mechanisms and propose deep Short Text Classification with Knowledge powered Attention (STCKA). We utilize Concept towards Short Text (CST) attention and Concept towards Concept Set (C-CS) attention to acquire the weight of concepts from two aspects. And we classify a short text with the help of conceptual information. Unlike traditional approaches, our model acts like a human being who has intrinsic ability to make decisions based on observation (i.e., training data for machines) and pays more attention to important knowledge. We also conduct extensive experiments on four public datasets for different tasks. The experimental results and case studies show that our model outperforms the state-of-the-art methods, justifying the effectiveness of knowledge powered attention.


Technologies ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 2
Author(s):  
Ashish Jaiswal ◽  
Ashwin Ramesh Babu ◽  
Mohammad Zaki Zadeh ◽  
Debapriya Banerjee ◽  
Fillia Makedon

Self-supervised learning has gained popularity because of its ability to avoid the cost of annotating large-scale datasets. It is capable of adopting self-defined pseudolabels as supervision and use the learned representations for several downstream tasks. Specifically, contrastive learning has recently become a dominant component in self-supervised learning for computer vision, natural language processing (NLP), and other domains. It aims at embedding augmented versions of the same sample close to each other while trying to push away embeddings from different samples. This paper provides an extensive review of self-supervised methods that follow the contrastive approach. The work explains commonly used pretext tasks in a contrastive learning setup, followed by different architectures that have been proposed so far. Next, we present a performance comparison of different methods for multiple downstream tasks such as image classification, object detection, and action recognition. Finally, we conclude with the limitations of the current methods and the need for further techniques and future directions to make meaningful progress.


2013 ◽  
Vol 427-429 ◽  
pp. 2309-2312
Author(s):  
Hai Bin Mei ◽  
Ming Hua Zhang

Alert classifiers built with the supervised classification technique require large amounts of labeled training alerts. Preparing for such training data is very difficult and expensive. Thus accuracy and feasibility of current classifiers are greatly restricted. This paper employs semi-supervised learning to build alert classification model to reduce the number of needed labeled training alerts. Alert context properties are also introduced to improve the classification performance. Experiments have demonstrated the accuracy and feasibility of our approach.


2019 ◽  
Vol 14 (1) ◽  
pp. 124-134 ◽  
Author(s):  
Shuai Zhang ◽  
Yong Chen ◽  
Xiaoling Huang ◽  
Yishuai Cai

Online feedback is an effective way of communication between government departments and citizens. However, the daily high number of public feedbacks has increased the burden on government administrators. The deep learning method is good at automatically analyzing and extracting deep features of data, and then improving the accuracy of classification prediction. In this study, we aim to use the text classification model to achieve the automatic classification of public feedbacks to reduce the work pressure of administrator. In particular, a convolutional neural network model combined with word embedding and optimized by differential evolution algorithm is adopted. At the same time, we compared it with seven common text classification models, and the results show that the model we explored has good classification performance under different evaluation metrics, including accuracy, precision, recall, and F1-score.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Sunil Kumar Prabhakar ◽  
Dong-Ok Won

To unlock information present in clinical description, automatic medical text classification is highly useful in the arena of natural language processing (NLP). For medical text classification tasks, machine learning techniques seem to be quite effective; however, it requires extensive effort from human side, so that the labeled training data can be created. For clinical and translational research, a huge quantity of detailed patient information, such as disease status, lab tests, medication history, side effects, and treatment outcomes, has been collected in an electronic format, and it serves as a valuable data source for further analysis. Therefore, a huge quantity of detailed patient information is present in the medical text, and it is quite a huge challenge to process it efficiently. In this work, a medical text classification paradigm, using two novel deep learning architectures, is proposed to mitigate the human efforts. The first approach is that a quad channel hybrid long short-term memory (QC-LSTM) deep learning model is implemented utilizing four channels, and the second approach is that a hybrid bidirectional gated recurrent unit (BiGRU) deep learning model with multihead attention is developed and implemented successfully. The proposed methodology is validated on two medical text datasets, and a comprehensive analysis is conducted. The best results in terms of classification accuracy of 96.72% is obtained with the proposed QC-LSTM deep learning model, and a classification accuracy of 95.76% is obtained with the proposed hybrid BiGRU deep learning model.


2020 ◽  
Vol 34 (05) ◽  
pp. 8504-8511
Author(s):  
Arindam Mitra ◽  
Ishan Shrivastava ◽  
Chitta Baral

Natural Language Inference (NLI) plays an important role in many natural language processing tasks such as question answering. However, existing NLI modules that are trained on existing NLI datasets have several drawbacks. For example, they do not capture the notion of entity and role well and often end up making mistakes such as “Peter signed a deal” can be inferred from “John signed a deal”. As part of this work, we have developed two datasets that help mitigate such issues and make the systems better at understanding the notion of “entities” and “roles”. After training the existing models on the new dataset we observe that the existing models do not perform well on one of the new benchmark. We then propose a modification to the “word-to-word” attention function which has been uniformly reused across several popular NLI architectures. The resulting models perform as well as their unmodified counterparts on the existing benchmarks and perform significantly well on the new benchmarks that emphasize “roles” and “entities”.


Author(s):  
Noha Ali ◽  
Ahmed H. AbuEl-Atta ◽  
Hala H. Zayed

<span id="docs-internal-guid-cb130a3a-7fff-3e11-ae3d-ad2310e265f8"><span>Deep learning (DL) algorithms achieved state-of-the-art performance in computer vision, speech recognition, and natural language processing (NLP). In this paper, we enhance the convolutional neural network (CNN) algorithm to classify cancer articles according to cancer hallmarks. The model implements a recent word embedding technique in the embedding layer. This technique uses the concept of distributed phrase representation and multi-word phrases embedding. The proposed model enhances the performance of the existing model used for biomedical text classification. The result of the proposed model overcomes the previous model by achieving an F-score equal to 83.87% using an unsupervised technique that trained on PubMed abstracts called PMC vectors (PMCVec) embedding. Also, we made another experiment on the same dataset using the recurrent neural network (RNN) algorithm with two different word embeddings Google news and PMCVec which achieving F-score equal to 74.9% and 76.26%, respectively.</span></span>


Author(s):  
Ming Hao ◽  
Weijing Wang ◽  
Fang Zhou

Short text classification is an important foundation for natural language processing (NLP) tasks. Though, the text classification based on deep language models (DLMs) has made a significant headway, in practical applications however, some texts are ambiguous and hard to classify in multi-class classification especially, for short texts whose context length is limited. The mainstream method improves the distinction of ambiguous text by adding context information. However, these methods rely only the text representation, and ignore that the categories overlap and are not completely independent of each other. In this paper, we establish a new general method to solve the problem of ambiguous text classification by introducing label embedding to represent each category, which makes measurable difference between the categories. Further, a new compositional loss function is proposed to train the model, which makes the text representation closer to the ground-truth label and farther away from others. Finally, a constraint is obtained by calculating the similarity between the text representation and label embedding. Errors caused by ambiguous text can be corrected by adding constraints to the output layer of the model. We apply the method to three classical models and conduct experiments on six public datasets. Experiments show that our method can effectively improve the classification accuracy of the ambiguous texts. In addition, combining our method with BERT, we obtain the state-of-the-art results on the CNT dataset.


Author(s):  
Aijun An

Generally speaking, classification is the action of assigning an object to a category according to the characteristics of the object. In data mining, classification refers to the task of analyzing a set of pre-classified data objects to learn a model (or a function) that can be used to classify an unseen data object into one of several predefined classes. A data object, referred to as an example, is described by a set of attributes or variables. One of the attributes describes the class that an example belongs to and is thus called the class attribute or class variable. Other attributes are often called independent or predictor attributes (or variables). The set of examples used to learn the classification model is called the training data set. Tasks related to classification include regression, which builds a model from training data to predict numerical values, and clustering, which groups examples to form categories. Classification belongs to the category of supervised learning, distinguished from unsupervised learning. In supervised learning, the training data consists of pairs of input data (typically vectors), and desired outputs, while in unsupervised learning there is no a priori output. Classification has various applications, such as learning from a patient database to diagnose a disease based on the symptoms of a patient, analyzing credit card transactions to identify fraudulent transactions, automatic recognition of letters or digits based on handwriting samples, and distinguishing highly active compounds from inactive ones based on the structures of compounds for drug discovery.


Sign in / Sign up

Export Citation Format

Share Document