Crystal growth on the outer enamel surface—An alternative to acid etching

1986 ◽  
Vol 89 (3) ◽  
pp. 183-193 ◽  
Author(s):  
R. Mailer ◽  
D.C. Smith
2009 ◽  
Vol 28 (4) ◽  
pp. 419-425 ◽  
Author(s):  
Shinya HORIUCH ◽  
Kazuyuki KANEKO ◽  
Hiroko MORI ◽  
Emi KAWAKAMI ◽  
Takashi TSUKAHARA ◽  
...  

Author(s):  
Adina Rotaru-Birgaoanu ◽  
Teodora Teslaru ◽  
R. Ionut Olariu ◽  
Ionut Chirap ◽  
Liliana Sachelarie ◽  
...  

Is PlasBeam pretreatment an efficient method to improve sealant adhesion onto the enamel surface?The aim of this study isto investigate the effects induced by three pretreatment techniques used to improve sealant adhesion on the enamel surface, respectively standard acid-etching, UV radiations and a new method based on plasma operating at atmospheric pressure, namely the PlasBeam method.The physical-chemical modifications induced onto the enamel surface by the above pretreatments were analyzed using Contact Angle Measurements and Diffuse Reflectance Spectroscopy.The changes in the enamel surface morphology show that the acid-etching pretreatment is mostly efficient in increasing roughness, but this method stimulates the degradation processes that are well-known and turns down the brillianceof the treated surface. On the other hand, the PlasBeam treatment brings a higher roughness at the contact area between sealant and the enamel surface, compared to the UV radiations pretreatments.Moreover, the PlasBeam improves the hydrophilic character of enamel as a practical solution in enhancing the sealant adhesion to the surface. Related to other effects, it has been noticed that thePlasBeam method generates the most reflective enamel surface, whereas the White/Yellow index reaches the minimum level after a 10 second treatment.


2014 ◽  
Vol 39 (3) ◽  
pp. 273-282 ◽  
Author(s):  
X Wen ◽  
L Zhang ◽  
R Liu ◽  
M Deng ◽  
Y Wang ◽  
...  

SUMMARY This study aims to evaluate the effects of pulsed Nd:YAG laser on the tensile bond strength (TBS) of resin to human enamel and caries resistance of human enamel. A total of 201 human premolars were used in this in vitro study. A flat enamel surface greater than 4 × 4 mm in area was prepared on each specimen using a low-speed cutting machine under a water coolant. Twenty-one specimens were divided into seven groups for morphology observations with no treatment, 35% phosphoric acid etching (30 seconds), and laser irradiation (30 seconds) of pulsed Nd:YAG laser with five different laser-parameter combinations. Another 100 specimens were used for TBS testing. They were embedded in self-cured acrylic resin and randomly divided into 10 groups. After enamel surface pretreatments according to the group design, resin was applied. The TBS values were tested using a universal testing machine. The other 80 specimens were randomly divided into eight groups for acid resistance evaluation. Scanning electron microscope (SEM) results showed that the enamel surfaces treated with 1.5 W/20 Hz and 2.0 W/20 Hz showed more etching-like appearance than those with other laser-parameter combinations. The laser-parameter combinations of 1.5 W/15 Hz and 1.5 W/20 Hz were found to be efficient for the TBS test. The mean TBS value of 14.45 ± 1.67 MPa in the laser irradiated group was significantly higher than that in the untreated group (3.48 ± 0.35 MPa) but lower than that in the 35% phosphoric acid group (21.50 ± 3.02 MPa). The highest mean TBS value of 26.64 ± 5.22 MPa was identified in the combination group (laser irradiation and then acid etching). Acid resistance evaluation showed that the pulsed Nd:YAG laser was efficient in preventing enamel demineralization. The SEM results of the fractured enamel surfaces, resin/enamel interfaces, and demineralization depths were consistent with those of the TBS test and the acid resistance evaluation. Pulsed Nd:YAG laser as an enamel surface pretreatment method presents a potential clinical application, especially for the caries-susceptible population or individuals with recently bleached teeth.


2007 ◽  
Vol 77 (1) ◽  
pp. 117-124 ◽  
Author(s):  
Güvenç Basaran ◽  
Törün Özer ◽  
Nükhet Berk ◽  
Orhan Hamamcı

Abstract Objective: To test the shear bond strength, surface characteristics, and fracture mode of brackets that are bonded to enamel etched with an erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser operated at different power outputs: 0.5 W, 1 W, and 2 W. Materials and Methods: Human premolars that had been extracted for orthodontic purposes were used. Enamel was etched with an Er,Cr:YSGG laser system operated at one of three power outputs or with orthophosphoric acid. Results: The shear bond strength associated with the 0.5-W laser irradiation was significantly less than the strengths obtained with the other irradiations. Both the 1-W and 2-W laser irradiations were capable of etching enamel in the same manner. This finding was confirmed by scanning electron microscopy examination. The evaluation of adhesive-remnant-index scores demonstrated no statistically significant difference in bond failure site among the groups, except for the 0.5-W laser–etched group. Generally, more adhesive was left on the enamel surface with laser irradiation than with acid etching. Conclusion: The mean shear bond strength and enamel surface etching obtained with an Er,Cr: YSGG laser (operated at 1 W or 2 W for 15 seconds) is comparable to that obtained with acid etching.


Author(s):  
VV Mubeena ◽  
Tharian B Emmatty ◽  
Kumar Kavita ◽  
Bijimole Jose ◽  
AM Riswana

Introduction: Sealants have proved to be one of the easiest methods of caries prevention in young permanent teeth, the placement of which is very technique sensitive. The non-invasive method of pretreating the enamel surface by deproteinising it with 5.25% sodium hypochlorite (NaOCl) for 60 seconds prior to etching has proven to be a promising method for improving retention and reducing microleakage of sealant. Aim: To evaluate the effect of enamel pre-etching with sodium hypochlorite deproteinisation and bonding agent on retention and microleakage of pit and fissure sealants. Materials and Methods: This in-vitro experimental study was conducted in Department of Paediatric and Preventive Dentistry at Annoor Dental College, Muvattupuzha, Kerala and Nanotechnology Lab at Amrita Institute of Medical Science. Freshly extracted Intact permanent maxillary and mandibular 20 third molars and 20 premolars mounted on acrylic blocks were divided into 4 groups containing 5 teeth in each group. Molars and premolar were taken for assessing the rate of retention and microleakage, respectively. Teeth in Group 1 were subjected to acid etching only, Group 2 were deproteinised prior to acid etching, Group 3 were subjected to acid etching followed by bonding and Group 4 were subjected to deproteinisation, etching and bonding. Then, all teeth were sealed with pit and fissure sealant and underwent thermocycling in artificial saliva bath for evaluation of sealant retention and microleakage. After thermocycling, retention was assessed on molar by one pre-calibrated blinded examiner by passing a 0.5 mm diameter probe along the margins of the sealant placed to verify integrity, failure, or loss of continuity based on Simonsen’s criteria (1989). To assess microleakage, premolar samples were immersed in rhodamine B, sectioned longitudinally, and examined under a stereomicroscope for assessment of microleakage. Collected data were statistically analysed using Chi-square and Mann-Whitney u test. Results: The results showed 100% retention for teeth in Group 2a, Group 3a, Group 4a, while partial sealant loss was present in 3 teeth from Group 1a. The differences between the groups for retention was statistically significant (p=0.014). In the case of microleakage, Group 3b showed more microleakage and group 4b showed least microleakage and the difference between them was statistically significant (p=0.009). Conclusion: Deproteinisation and use of bonding agent increases retention of the pit and fissure sealants. However, deproteinisation is a more effective method to control microleakage when compared to bonding agent. Thus, it can be considered as an effective method for pretreating enamel surface before sealant placement.


2015 ◽  
Vol 39 (4) ◽  
pp. 348-357 ◽  
Author(s):  
RM Agarwal ◽  
R Yeluri ◽  
C Singh ◽  
AK Munshi

Objective: To suggest Papacarie® as a new deproteinizing agent in comparison with indigenously prepared 10% papain gel before and after acid etching that may enhance the quality of the bond between enamel surface and composite resin complex. Study design: One hundred and twenty five extracted human premolars were utilized and divided into five groups: In the group 1, enamel surface was etched and primer was applied. In group 2, treatment with papacarie® for 60 seconds followed by etching and primer application. In group 3, etching followed by treatment with papacarie® for 60 seconds and primer application. In group 4, treatment with 10% papain gel for 60 seconds followed by etching and primer application. In group 5, etching followed by treatment with 10% papain gel for 60 seconds and primer application . After bonding the brackets, the mechanical testing was performed using a Universal testing machine. The failure mode was analyzed using an adhesive remnant index. The etching patterns before and after application of papacarie® and 10% papain gel was also evaluated using SEM. The values obtained for shear bond strength were submitted to analysis of variance and Tukey test (p < 0.05). Results: It was observed that group 2 and group 4 had the highest shear bond strength and was statistically significant from other groups (p=0.001). Regarding Adhesive remnant index no statistical difference was seen between the groups (p=0.538). Conclusion: Papacarie® or 10% papain gel can be used to deproteinize the enamel surface before acid etching to enhance the bond strength of orthodontic brackets.


2016 ◽  
Vol 7 (2) ◽  
Author(s):  
Vladan Mirjanić ◽  
Đorđe Mirjanić ◽  
Adriana Arbutina

Etch of enamel produces pores, where subsequently resin or adhesive system infiltrate. Silvestrone has established different morphological forms of etched enamel. Enamel surface, after being treated with phosphoric acid, has been demineralized in thickness of 5-10 μm, and that is enamel etched area. About 20 μm thick pores formed under the surface are the areas of qualitative pores. Under that, about 20 μm thick area of quantitative pores follows. Material consisted of human teeth with intact enamel extracted because of paradontophatia or orthodontic reasons. Untreated and treated teeth have been analysed with the application of AFM, type JSPM-5200 in contact mode, which means that physical contact between AFM sonda and enamel surface is constant force.


PeerJ ◽  
2022 ◽  
Vol 10 ◽  
pp. e12635
Author(s):  
Katrin Weber ◽  
Daniela E. Winkler ◽  
Ellen Schulz-Kornas ◽  
Thomas M. Kaiser ◽  
Thomas Tütken

Experimental approaches are often used to better understand the mechanisms behind and consequences of post-mortem alteration on proxies for diet reconstruction. Dental microwear texture analysis (DMTA) is such a dietary proxy, using dental wear features in extant and extinct taxa to reconstruct feeding behaviour and mechanical food properties. In fossil specimens especially, DMTA can be biased by post-mortem alteration caused by mechanical or chemical alteration of the enamel surface. Here we performed three different dental surface alteration experiments to assess the effect of common taphonomic processes by simplifying them: (1) tumbling in sediment suspension to simulate fluvial transport, (2) sandblasting to simulate mechanical erosion due to aeolian sediment transport, (3) acid etching to simulate chemical dissolution by stomach acid. For tumbling (1) we found alteration to be mainly dependent on sediment grain size fraction and that on specimens tumbled with sand fractions mainly post-mortem scratches formed on the dental surface, while specimens tumbled with a fine-gravel fraction showed post-mortem formed dales. Sandblasting (2) with loess caused only negligible alteration, however blasting with fine sand quartz particles resulted in significant destruction of enamel surfaces and formation of large post-mortem dales. Acid etching (3) using diluted hydrochloric acid solutions in concentrations similar to that of predator stomachs led to a complete etching of the whole dental surface, which did not resemble those of teeth recovered from owl pellets. The experiments resulted in post-mortem alteration comparable, but not identical to naturally occurring post-mortem alteration features. Nevertheless, this study serves as a first assessment and step towards further, more refined taphonomic experiments evaluating post-mortem alteration of dental microwear texture (DMT).


Sign in / Sign up

Export Citation Format

Share Document